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Abstract—Modern information and communication systems have become increasingly challenging to manage. The ubiquitous system
logs contain plentiful information and are thus widely exploited as an alternative source for system management. As log files usually
encompass large amounts of raw data, manually analyzing them is laborious and error-prone. Consequently, many research
endeavors have been devoted to automatic log analysis. However, these works typically expect structured input and struggle with the
heterogeneous nature of raw system logs. Log parsing closes this gap by converting the unstructured system logs to structured
records. Many parsers were proposed during the last decades to accommodate various log analysis applications. However, due to the
ample solution space and lack of systematic evaluation, it is difficult for practitioners to find ready-made solutions that fit their needs.
This paper aims to provide a comprehensive survey on log parsing. We begin with an exhaustive taxonomy of existing log parsers.
Then we empirically analyze the critical performance and operational features of 17 open-source solutions quantitatively and
qualitatively and, whenever applicable, discuss the merits of alternative approaches. We also elaborate on future challenges and
discuss the relevant research directions. This survey constitutes a helpful resource for system administrators and domain experts to
choose the most desirable open-source solution or implement new ones based on application-specific requirements.

Index Terms—Log parsing, system logs, log template extraction, log analysis

1 INTRODUCTION

ITH the proliferation of the Internet of Things (IoT),

Cloud/Edge computing, Industry 4.0, and Fifth-
generation mobile networks (5G), modern computing and
communication systems commonly incorporate a large va-
riety of (distributed) components to provide diversified
services with guaranteed performance [1]. Consequently,
they have become increasingly complex and burdensome
to manage. System administrators traditionally resort to
runtime analysis such as code instrumentation and profiling
for execution monitoring and problem diagnosis, but these
techniques are non-trivial to configure and can incur non-
negligible overhead in production environment [2]. Alter-
natively, many research endeavors seek to explore system
logs to accomplish the same tasks in a much less intru-
sive manner. Indeed, since the advent of the BSD Syslog
protocol [3] in the 1980s, information and communications
technology (ICT) systems have widely employed log files
to keep track of the execution states and system events at
runtime. Log files usually contain rich runtime information
that system administrators and domain experts can leverage
to perform advanced analytics and are thus deemed a fun-
damental building block for the development, maintenance,
and troubleshooting of the modern systems [4].

However, nowadays, as the volume, velocity, and variety
of system logs keep exploding, manually inspecting log
messages is mostly impractical [5]-[7]. Existing log man-
agement and analytic tools [8]-[19] follow the classic Expert
Systems approach [20], which heavily relies on manually
composing regular expressions or customized rules to fil-
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Source code

# Log printing statement 1
logging.info('Admin %s logged in’,
admin)

System log entries

2021-01-08 13:44:29,820 -
2021-01-08 13:48:29,100 -

2021-01-08 13:50:32,115 -
2021-01-08 13:51:32,105 -

Admin Admin0 logged in
Error detected: John raised
an emor

Admin Admin1 logged in
Error detected: Jim raised

# Log printing statement 2
logging.error('Error detected: %s
raised an error', err_user)

an eror
2021-01-08 13:53:22,078 - System warning: John
disconnected from system
2021-01-08 13:55:24,301 - System warning: Jim
disconnected from system
2021-01-08 13:55:39,347 - Admin Admin2 logged in
2021-01-08 13:57:34,921 - Error detected: Admin0
raised an error

# Log printing statement 3
logging.warning('System warning: %s
disconnected from system', warn_user,

L | |
Structured fields Unstructured field

Fig. 1: A sample snippet of raw log entries along with the
corresponding log printing statements in the source code.

ter the log messages of interest. This approach requires a
thorough understanding of the system internals and contin-
uous maintenance over system upgrades [21]. For example,
composing sufficiently accurate rules for Logsurfer [14] can
incur a steep overhead [22]. Some network and security ser-
vice providers even have to operate large data engineering
teams to manage the composed rules [23].

To tackle this challenge, many end-to-end log analysis
frameworks have been proposed. These frameworks em-
ploy many data mining and statistical analysis techniques to
extract insights from system events [24]-[26]. In particular,
with the rise of Artificial Intelligence (AI) and Machine
Learning (ML) over the recent decades, there have been
considerable activities towards enhancing IT operations an-
alytics using AI/ML techniques (i.e., AIOps), which heavily
rely on system logs to collect observational data [27]-[29].
Despite the optimistic outcomes, these frameworks mostly
expect the input logs to have a normalized format (e.g.,
event types, message signatures, vectors, matrices) [30]-
[33]. Nonetheless, raw logs generally record runtime system
events, e.g., operations, warnings, and errors, as single-line
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Fig. 2: The role of log parsing for system management.

or multi-line textual messages whose formats are solely de-
cided by the log printing statements (e.g., log.info(), printf()).
An illustrative example of 8 interleaved system log entries
originated from 3 separate log printing statements in the
program source code is shown in Fig. 1. Each entry consists
of a timestamp and a free-text message with no event type or
message signature. Such an issue is particularly obvious in
large-scale systems [34]. There have been efforts towards log
format unification [35]-[40], but most existing systems still
generate log entries as unstructured (or semi-structured),
free-text messages.

To close this gap, many research endeavors have been
devoted to log parsing, which entails the fundamental step
of automatically converting raw log entries into standard
system events for high-level log analysis and system man-
agement. As depicted in Fig. 2, raw log entries originate
from various real-world systems that are usually comprised
of heterogeneous hardware devices (e.g., actuators, sensors,
network equipment, end-user terminals) and software com-
ponents (e.g., operating systems, applications). Log parsing
eliminates the need to manually match and convert every
entry of a system log, which can be otherwise extremely la-
borious and error-prone, and provides a unified data format
for varied system management tasks, including anomaly
detection [41]-[46], root cause analysis [47]-[49], failure
prediction [50]-[52], and end-to-end log analysis [53]-[55].
Log parsing can also augment log management systems by
converting raw log entries into compact representations and
concise message types to save memory and facilitate data
queries [56]-[59]. With the rapid expansion of modern ICT
systems, log parsing keeps gaining momentum in recent
years. According to our literature study, as synopsized in
Fig. 3, many log parsers have been proposed during the last
two decades, especially over the last four years. Nonethe-
less, despite the abundant solutions, their performance char-
acteristics (e.g., parsing accuracy, runtime efficiency) and
operational features (e.g., execution mode, accessibility) are
still unclear, leading to the duplicated exertions of reinvent-
ing the wheel [60].

This paper provides a comprehensive review of existing
log parsers and a detailed performance evaluation of open-
source solutions. Some prior works are related to ours: Lan-
dauer et al. [61], Svacina et al. [62], He et al. [63], Bhanage et
al. [64] and Skopik et al. [65], and Zheng et al. [66] investi-
gated the impact of log mining for cybersecurity, reliability
engineering, root cause analysis, anomaly detection, and
failure prediction respectively. These works only covered
specific log parsers relevant to each application domain.
Instead, our taxonomy focuses on log parsing and targets
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Fig. 3: Log parsers and the related works proposed during
the past two decades.

all the existing solutions regardless of application domains.
Besides the taxonomic reviews, some prior works focus on a
specific collection of solutions and dive into their internals.
El-Masri et al. [67] qualitatively discussed their performance
and operational features of 17 log parsers. Zhu et al. [68]
standardized the quantitative performance analysis process
by evaluating 13 log parsers on 16 public datasets. Copstein
et al. [69] validated the performance of the exact solutions
and investigated their best practices to aid forensic analysis.
Our work analyzes the performance and operational fea-
tures of existing log parsers qualitatively and quantitatively.
The novel aspects of this survey concerning the related work
are outlined in Table 1.

TABLE 1: Comparison with the related works

Prior work Perfprmance analysis'
Quantitative  Qualitative
Landauer et al. [61]
Svacina et al. [62]
He et al. [63]
Bhanage et al. [64]
Skopik et al. [65]
Zheng et al. [66]
El-Masri et al. [67] v
Zhu et al. [68]
Copstein et al. [69]

[ Our work [ v [ v v |

Taxonomy
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The main contributions of this paper are as follows:

e We review the literature and devise an exhaustive
taxonomy of existing solutions based on their log
parsing approaches.

e We collate the prior research endeavors and our
benchmarking results on 17 open-source log parsers
to empirically analyze the performance characteris-
tics and operational features of parsing software.

e We envision future challenges for log parsing and
discuss the possible research directions.

This paper is structured as follows: in Sec. 2, we give a
general overview of log parsing. In Sec. 3, we present our
taxonomy on existing log parsing solutions based on their
parsing methodologies. Then we analyze the performance
and operational features of the existing log parsers in Sec. 4,
and discuss future challenges and research directions in
Sec. 5 before concluding in Sec. 6.



TABLE 2: Table of terminology and definitions

Terminology ‘

Definition |
A file of system execution records collected
from any real-world systems.

The process of converting the unstructured
entries in log files to structured event types.
A single- or multi-line text record derived
from a log printing statement. It is usually
comprised of multiple fields.

The free-text field of a log entry. It describes
a specific system event or status.

A notation marking a specific group of log
entries from a log printing statement.
Denotes the format of an event type. It may
consist of fixed tokens and variable tokens.
The process of ruling out irrelevant raw log
entries and tokenize the log messages.

The process of organizing log messages
based on specific metrics.

The process of identifying the correlative
event template for each log message cluster.

Log file/System log

Log parsing

Log entry/record

Log message

Event type

Event template

Preprocessing

Data classification

Template extraction

2 LOG PARSING IN A NUTSHELL

In this section, we give a general definition of system logs
and introduce the basic process of log parsing. We list all the
relevant terminologies in Table. 2 for convenient reference.

2.1 What is a system log?

System logs are text files containing many single-line or
multi-line log entries for modern computing and communi-
cation systems ranging from large-scale distributed clusters,
supercomputers, end-user devices, and self-contained ap-
plications [70]. Each entry records a specific runtime system
event. There is no universal standard to indicate its consti-
tuting fields. A log entry can contain multiple fields such as
timestamp, severity level, logger name, message-id, and the
actual log message expressing a semantic meaning. These
fields are separated with delimiters like spaces, colons, or
equal signs. While most fields, such as timestamps, have
relatively standard formats, the log message field is usu-
ally in a free-text format, defined by individual developers
through the log printing statements as illustrated in Fig. 1.

2.2 Log parsing process

The basic idea of log parsing is classifying the input log en-
tries based on specific procedures and extracting the correct
event types. We define a log file as a sequence of log entries:
L =(e;: i =1,2,...), where each entry [; is generated by a
log printing statement and can be represented as a sequence
of tokens: e; = (t; : j = 1,2,...). A token can be any
combination of alphanumeric and special characters. A set
of predefined delimiters separates tokens in each log entry.
The length of each entry depends on the corresponding log
printing statement and the parameters. Log entries gener-
ated by the same logging statement are of the same event
typel. The free-text message field of a log entry usually
consists of constant tokens that stay fixed for all messages

1. Note that the event types here do not necessarily map to the same
set of actual system events, which the system developers solely defined.
Instead, researchers commonly use them in the log parsing field to
indicate the group of log messages generated by the same statement in
the source code of system programs.

Raw system logs
2021-01-08 13:44:29,820 - Admin Admin0 logged in
2021-01-08 13:48:29,100 - Error detected: John raised an error
2021-01-08 13:50:32,115 - Admin Admin1 logged in
2021-01-08 13:51:32,105 - Error detected: Jim raised an error
2021-01-08 13:53:22,078 - System warning: John disconnected
from system
2021-01-08 13:55:24,301 - System warning: Jim disconnected from
system
2021-01-08 13:55:39,347 - Admin Admin2 logged in
2021-01-08 13:57:34,921 - Error detected: Admin0 raised an error

Y Log parsing
Preprocessing

i Parameter tuning |
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Structured log entries

2021-01-08 13:44:29,820 - Event type 1
2021-01-08 13:48:29,100 - Event type 2
2021-01-08 13:50:32,115 - Event type 1
2021-01-08 13:51:32,105 - Event type 2
2021-01-08 13:53:22,078 - Event type 3
2021-01-08 13:55:24,301 - Event type 3
2021-01-08 13:55:39,347 - Event type 1
2021-01-08 13:57:34,921 - Event type 2

Log templates

Event type 1: Admin <*> logged in
Event type 2: Error detected: <*>
raised an error

Event type 3: System warning: <*>
disconnected from system

<>

Fig. 4: A general overview of the log parsing process.

of the same event type and variable tokens corresponding
to the parameters in the logging statement that may vary in
each entry. A typical log template is extracted by keeping
the constant parts and substituting the variable parts with
predefined placeholders.

As shown in Fig. 4, a log parser commonly com-
prises four steps: preprocessing, data classification, post-
processing, and template extraction. In the preprocessing
step, the input log entries can be filtered, deduplicated, con-
verted, or tokenized based on bespoke rules and predefined
delimiters. The rules can be composed based on domain-
specific knowledge or regular expressions [71]. We give a
detailed discussion on preprocessing rules and delimiters in
Sec. 4.2.3. After the preprocessing step, the log message field
for each entry is extracted for further parsing. Although
some log parsers consider this step optional, most exist-
ing solutions still heavily rely on preprocessing to reduce
the input size and processing noises. Some log parsers
can significantly benefit from fine-grained preprocessing. In
the data classification phase, log entries are encoded with
tailor-made data structures (e.g., numerical vectors, trees,
dictionaries) and matched or grouped based on predefined
similarity metrics (e.g., cosine similarity [72], Jaccard sim-
ilarity [73], string edit distance [74]). Each resulting group
constitutes a unique event type originating from a specific
log printing statement. Many existing log parsers also op-
tionally expose a set of tunable parameters to allow users
to customize the subsequent log parsing process. For some
solutions, parameter tuning can markedly improve their
performance. We discuss the parameter tuning at length in
Sec. 4.2.2. As log messages usually have heterogeneous char-
acteristics, the data classification phase may fail to adapt to



all the possible formats and lead to over- or under-parsing.
Some solutions thus also adopt a post-processing phase to
adjust the existing data classification results and avoid bias.
Finally, each cluster’s log template (or signature) is extracted
to represent the log message field for all the enclosed entries.
This process entails identifying constant and variable tokens
for log messages in the same group. After log parsing, the
initially unstructured log entries are converted into struc-
tured events with associated types, which can be leveraged
by the ensuing applications to generate vectors, matrices,
or sequences for advanced data analysis, insight extraction,
and decision-making.

3 LOG PARSING SOLUTIONS: A TAXONOMY

This section presents our taxonomy of existing log parsing
solutions that employ different algorithms to interpret the
free-text log messages and infer the corresponding event
types. Among the different log parsing phases, we opt to
classify existing solutions based on the methods for clas-
sifying log messages and extracting templates since these
are the primary building blocks for any log parser. Based
on our literature review, we categorize existing log parsing
solutions into four categories: clustering-based approaches,
frequent pattern mining-based approaches, heuristic ap-
proaches, and program analysis. Program analysis is a code-
driven approach that primarily relies on the source code
or the compiled executables to associate each log entry to
the corresponding log printing statement, while solutions
belonging to the other categories are data-driven. As most of
the investigated log parsers mainly operate on the message
field of each log entry, we thus refer to log messages as
a general representation of log entries in this section. Due
to the ample solution space, our classification method can
partially overlap because a few log parsers might employ
techniques from multiple categories. We classify them based
on their primary log parsing method in this work. The goal
is to categorize log parsing methods intuitively for IT pro-
fessionals rather than provide a non-overlapping taxonomy
of existing solutions.

Literature search

We collected the related works from prevalent scientific
publications databases, including Google Scholar, IEEE eX-
plore, ACM Digital Library, SpringerLink, ResearchGate,
and arXiv. The literature search consisted of two steps. We
first explored these databases using the following keywords:
log parsing, log template extraction, and log analysis. For
each paper matching the keyword search, we checked its
coherence with the log parsing process defined in Sec. 2.2.
In this way, we derived the initial set of related works. Then
we checked the references for each selected paper to search
for related works. We also checked the works citing this
paper whenever applicable. For newly obtained papers, we
repeated this process iteratively. After almost one year of
literature search, our paper covers the most exhaustive set
of log parsing literature during the time of writing.

3.1 Clustering-based log parsing

Some log parsers are based on traditional clustering algo-
rithms. For a given sequence of log entries L, a clustering-
based log parsing method clusters them into a set of K
clusters C = {C1, s, ...,Ck }, such that:

C;iNCy=0,Vi,je{l,. . K} i#]j 1)
Ci #0,Vie{l,. K} 2)

K
Uci=c ®)

i=1

Log entries in the same cluster have high similarities,
while entries across different clusters have low similarities.
For each final cluster Cj, a log parsing method will extract a
log template representing the event type of all the included
entries. Note that the K can be specified beforehand or de-
cided at runtime. According to our literature study, existing
log parsers employ four clustering algorithms: hierarchical
clustering, density-based clustering, online clustering, and
other clustering methods.

3.1.1 Hierarchical clustering

A hierarchical clustering algorithm parses raw log mes-
sages into a hierarchy of clusters with different levels of
similarities, i.e., dendrograms. Unlike other approaches that
provide a definite set of clusters, it generates a collection
of partitions with varying levels of details for users to
select. Although the parsing results are more informative
and flexible, it incurs a higher computation cost than the
other clustering approaches [136]. Hierarchical clustering
approaches can be either agglomerative or divisive.
Agglomerative clustering approaches begin with indi-
vidual log messages and iteratively merge similar clusters
until all the messages end up in the same cluster. Log-
Mine [7] is a typical solution embracing this approach. It
first executes a one-pass clustering algorithm to scan all
the log messages sequentially and generate a set of dense
clusters based on a distance function. The first message in
each cluster is selected as the pattern of that cluster, and
the resultant patterns form the bottom hierarchy. After this
initial phase, LogMine repeats the clustering algorithm with
a relaxed distance bound on the generated patterns. Then
it applies a merging algorithm for each generated cluster
to align and merge all the constituent patterns sequentially
to generate a new pattern as a log template. These new
patterns then form a new hierarchy level. The clustering
and pattern recognition processes are iteratively invoked
until the hierarchy is completed. Similarly, Lin et al. [47]
convert raw log messages into sequences and iteratively
merge them into new clusters using cosine similarity as
the distance metric. The clustering process only terminates
when all the newly merged clusters are far from each other.
Afterward, the log message closest to each cluster’s centroid
is selected as that cluster’s template. LPV [75], LogTree [24],
and LogOHC [76] also belong to this category. LPV employs
agglomerative hierarchical clustering (i.e., complete-linkage
clustering) to incrementally group log messages based on
Euclidean distance. LogTree employs single-linkage ag-
glomerative clustering for multi-view event generation from



TABLE 3: Existing log parsers by category.

Category [ Subcategory | Existing research items
Hierarchical clustering LogMine [7], Lin et al. [47], LPV [75], LogTree [24], LogOHC [76], METING [77], HELO [78]
Density-based clustering | STE [79], LTE [80], Pokharel et al. [81], Zou et al. [82], HLAer [83]
Clustering LenMa [84], Guo et al. [85], LogSimilarity [52], Zhao et al. [86], StringMatch [87], FLP [88],

Online clustering

Joshi et al. [89], One-to-one [90]

Other clustering methods

LogSig [91], LKE [41], Pylogabstract [92]

Apriori-based approach

SLCT [93], LogHound [94], LogCluster [95], LFA [96], ENG [97]

Frequent pattern mining Other approaches

Signature Tree [98], DLog [99], FI-tree [50], Craftsman [100], Prefix-Graph [28], CAPRI [101]
Logram [27], Liu et al. [102], Stearley et al. [103]

LCS-based approach

Spell [104], SwissLog [43], Delog [105], Slop [106], Logan [107], LTmatch [108]

Parsing tree approach

Drain [109], OLMPT [110], USTEP [111], AECID-PG [112], SHISO [113]

Heuristic approaches ML-based approach

NLP-LP [114], Li et al. [34], Kobayashi et al. [115], McLean et al. [23], FastLogSim [116], NuLog [117]
LogParse [118], Thaler et al. [119], Rand et al. [120], Ruecker et al. [121], LogDTL [122], LogStamp [29]

Other approaches

Guao et al. [123], Chuah et al. [124], LEARNPADS [125], Baler [126], MoLFI [127], Lopper [128]
CLF [129], POP [130], IPLoM [56], Paddy [131], AEL [2]

Program analysis Code analysis

Xu et al. [132], Yuan et al. [48], Tak et al. [133]

Executable analysis

Genlog [134], Zhao et al. [135]

system logs. LogOHC proposes a customized online hier-
archical clustering algorithm to aggregate similar log mes-
sages.

On the contrary, a divisive clustering approach considers
the entire input dataset as a cluster and iteratively parti-
tions it until all the resulting clusters contain a single log
message. METING [77] and HELO [78] follow divisive
hierarchical clustering. METING constructs a dendrogram
by recursively bisecting existing clusters. At each partition-
ing step, logs containing the most common n-grams of a
cluster are separated into one sub-cluster. The bisection only
stops if a cluster reaches adequate homogeneity, assessed
using a customized criterion. Similarly, HELO recursively
partitions existing clusters by columns until each cluster’s
log messages have > 40% common tokens.

3.1.2 Density-based clustering

A density-based clustering algorithm explores the problem
space and considers regions with high point density as clus-
ters. Density-based algorithms, especially the Density-Based
Spatial Clustering (DBSCAN) [137], have been widely used
for log parsing. For instance, based on the assumption that
log messages of the same type tend to have identical static
tokens appear in the same position, STE [79] defines a
scoring function to evaluate the tendency of a token being
static. Then it employs the DBSCAN algorithm to identify
static tokens based on the function. The log template is
extracted from the top clusters. LTE [80] has three mod-
ules: information filter, message clustering, and template
extraction. The information filter rules out timestamps and
IP fields of the raw log messages based on pre-composed
regular expressions. Then the clustering module employs
the DBSCAN algorithm to group together messages with
similar formats. Finally, the template extraction module
obtains event types for each group using the Latent Dirichlet
Allocation (LDA) [138] model integrated with the sampling
algorithm. Pokharel et al. [81] convert each log message
into bi-grams and cluster them directly using the DBSCAN
algorithm. Zou et al. [82] also employ the DBSCAN algo-
rithm along with a customized Levenshtein distance [139]
to cluster log messages and extract the event templates.
Besides the DBSCAN algorithm, HLAer [83] measures the
similarities of the input logs and builds a clustering tree
using the density-based OPTICS algorithm [140]. In the final

phase, it extracts log formats via a sequential alignment
scheme for each node in the clustering tree.

3.1.3 Online clustering

Online incremental clustering is another commonly adopted
approach. Solutions in this category use explicit similarity
metrics to cluster the continuously arriving logs. The most
representative example is LenMa [84], which incrementally
clusters log messages based on positional token length. It
converts each incoming log message into a vector of the
constituent tokens’ lengths. The vector is compared with
the template of each existing cluster in terms of identical
positional tokens and cosine similarity. The message is either
appended to an existing cluster with the highest similarity
or classified as a new cluster.

Some solutions follow this procedure but use distinct
similarity metrics. For instance, Guo et al. [85] calculate
message similarity based on the proportion of constant to-
kens. LogSimilarity [52] does this according to the weighted
ratio of shared tokens. Zhao et al. [86], [141] clusters
log messages based on the ratio of position-wise identical
tokens and common sequences. StringMatch [87] clusters
log messages based on cosine similarity and employs token
position entropy to adjust existing clusters incrementally.
FLP [88] incrementally clusters incoming logs based on
message length, the first and last tokens, and a customized
similarity metric. Joshi et al. [89] vectorize incoming logs
with randomized hashing and employ a similarity search
algorithm to cluster them through bitwise comparison in-
crementally. Messages with a common subsequence ratio
beyond a threshold are clustered together. One-to-one [90]
maintains a template list on-the-fly and follows three cus-
tomized rules to cluster incoming logs incrementally.

3.1.4 Other clustering methods

Besides the preceding clustering approaches, there are three
other clustering-based solutions. In particular, LogSig [91]
customizes K-Means algorithm [142], a centroid-based clus-
tering algorithm. LogSig converts input log messages into
ordered word pairs and aggregates them into groups. Then
it iterative moves log messages between groups to maxi-
mize the total number of common word pairs. Finally, it
extracts the log template for each group based on common
pairs. LKE [41] clusters log messages based on string edit



distance. It calculates weights using a Sigmoid function and
assigns them to different token positions to prioritize the
leading tokens. Two messages with a distance smaller than
a threshold are grouped, and a K-Means algorithm decides
the threshold. Then it further splits each group by the least
frequent token positions. The newly obtained groups consti-
tute the final clustering results. Pylogabstract [92] employs
a graph clustering approach. It firstly groups log messages
by length and then employs Girvan-Newman community
detection [143] and modularity value for log clustering.

3.2 Frequent pattern mining

Some log parsers employ Frequent Pattern Mining
(FPM) [144], a traditional data mining approach to discover
patterns that occur beyond a support value.

Some solutions mimic the classical Apriori algo-
rithm [145] to extract frequent token sequences. SLCT [93]
is the most representative solution adopting this approach.
Its intuition originates from two fundamental properties
of system logs: (i) most of the tokens occur only a few
times, (ii) there are usually strong correlations between the
frequent tokens. SLCT parses logs with three passes of the
input dataset. The first pass extracts all the frequent words
whose occurrences are larger than a predefined threshold.
The second pass builds cluster candidates by matching
the frequent words on each line. Finally, candidates with
enough frequent words are identified as clusters.

SLCT lays the foundation for several other solutions:
LogHound [94] considers input logs as database trans-
actions and employs a breadth-first algorithm to extract
frequent messages using an in-memory tree, which is built
by layers until it includes all the frequent itemsets. LogClus-
ter [95] locates the frequent words using a hash table. Then
it extracts all the frequent words from each log message to
build or update a candidate group. Candidates with smaller
support than the threshold are dropped as outliers, and
the remaining ones are selected as final clusters. LFA [96]
scans over the input logs to build a word frequency table
recording the position-wise occurrence of each word. Then
it parses the log file by line and retrieves the frequency for
every word in its corresponding position. LFA identifies the
constant and variable parts based on the frequencies and
builds an event type as a regular expression. ENG [97]
extends LFA to support multiple delimiters for tokenization
and multi-word variables.

Aside from the Apriori-based approaches, some works
rely on tailored data structures to explore the frequency
properties. The most commonly used structure is the prefix
tree (also known as a trie), which is sequentially constructed
from the input tokens to reduce index search complexities
and identify frequent log sequences. For instance, Signature
Tree [98] builds a prefix tree by recursively adding the
most frequent combination of tokens as children until all
the messages are associated with the tree. Then it prunes
the tree by discarding all the nodes with more children than
a threshold. After the pruning step, each remaining root-leaf
path in the parsing tree constitutes a unique event template.
DLog [99] constructs a prefix tree by recursively picking
the same beginning tokens and employing a hashmap to
store token occurrences. Event templates are extracted by
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comparing the root node with subtree nodes. FI-tree [50]
scans the input logs to calculate token frequencies and
uses a heuristic algorithm to construct a prefix tree. Newly
learned log templates could also be incrementally added
into the tree by only parsing the recently arrived logs.
Craftsman [100] employs a dynamic prefix tree to parse logs
and extract templates. First, it scans the whole dataset to
derive the token frequency list ranked in descending order.
Then it parses each log message to add a new branch to
the tree incrementally according to the frequency list and
the common subsequence with existing nodes. The obtained
tree is pruned following a node degree constraint. Prefix-
Graph [28] extends a probabilistic graph structure from
the prefix tree. It begins with a directed acyclic graph and
iteratively merges branches with similar frequency vectors.
Finally, it uses a template extraction algorithm to retrieve
the message signatures from the graph.

Besides prefix trees, some solutions choose other ways
to discover frequent sequences. CAPRI [101] adopts the
type-casting technique and bitmap multiplication algorithm
to extract log events with different frequency properties
and support incremental log mining. It also generates rules
to reflect the contextual relationship between sequential
messages. Logram [27] relies on n-gram dictionaries for log
parsing. The n-grams with occurrence below a threshold
are recursively transformed to (n — 1)-gram until a list of
infrequent 2-grams is obtained. Overlapping tokens in the
list are identified as variables. Liu et al. [102] propose an
approach that scans the input logs to build a word-counting
table. Subsequently, a log dictionary mapping each keyword
to a set of clusters is constructed. Each log message is
parsed by extracting the most frequent token from the word-
counting table and retrieving the most related log templates
from the dictionary. The message is added to the dictionary
by measuring the edit distance with the templates. Stear-
ley et al. [103] maps each input token to an integer and
employs a matching algorithm to locate all the patterns with
a user-given specificity and support. Then it employs a set
of conversions to classify log messages.

3.3 Heuristic approach

Aside from the more conventional frequent pattern min-
ing and clustering algorithms, many log parsers employ
different heuristic algorithms and data structures for log
encoding, data parsing, and template extraction. The most
adopted approaches include longest common subsequence
(LCS), Parsing tree and Machine Learning (ML), which are
discussed in Sec. 3.3.1, Sec. 3.3.2, and Sec. 3.3.3. Some other
log parsing methods are based on more customized rules
and data structures. We present them in Sec. 3.3.4.

3.3.1 LCS-based approach

Longest Common Subsequence (LCS) [146] is a popular
approach widely adopted in log processing. Given two log
messages Iy = {z1,%2,...2,} and lo = {y1,92, .., Ym},
with 2;(1 < i < n) and y;(1 < j < m) being arbitrary to-
kens in each message. A token sequence s = {21, 22, ..., 2k }
is considered a common sequence of [; and [y iff s C [y
and s C [y. Intuitively, any pair of log messages can have
multiple common sequences. The LCS of I; and /5 is defined
as a sequence of tokens with the value of £ maximized.



Spell [104] is a typical solution that embraces an LCS-
based approach. It maintains an LCS map for already parsed
log entries, and each map consists of a group of log entry
lineIDs, and the corresponding parsed LCS sequence (or
message type). Spell searches through the map for an in-
coming log entry m to find the mapping e whose sequence
has the maximum LCS length with m. If the length is longer

[m]

than -, the LCS sequence of ¢ is updated based on m with
the lineID of m appended. Otherwise, a new mapping is
created for m. In a later extension [147], the authors aug-
mented Spell with more efficient search algorithms, parallel
execution, and semantic recognition.

Similar to Spell, SwissLog [43] relies on a dictionary
to parse logs in four steps that involve multiple common
heuristic approaches. It first tokenizes raw logs to build
a valid wordset, which is then used to classify input logs.
An LCS-based algorithm is then invoked to identify and
mask the variable parts. Finally, it constructs a prefix tree
to merge groups with common subsequences to avoid
over-parsing. Delog [105] adopts a hash-based searching
and an LCS-matching algorithm to partition similar input
logs into groups. Each group is adjusted using a sequence
alignment algorithm to cope with the inaccuracy caused
by messages of the same types with variable parameter
lengths. Slop [106] partitions incoming logs by lengths.
For each message, Slop matches it to existing logs in the
same partition and employs an LCS-based algorithm to
extract templates. As messages with the same type can
have different lengths, Slop uses another algorithm to iden-
tify and merge existing templates from all the partitions.
Logan [107] defines a length-based method to rule out
irrelevant templates and an LCS-based algorithm to match
log messages with similar patterns. It also performs post-
filtering constraints and periodical merging to improve
parsing accuracy. LTmatch [108] also relies on LCS for its
online processing pipeline. It calculates its word-matching
rates with existing templates for each new log using an LCS-
based algorithm. The log is added to the most matching
group, and the corresponding template is updated using a
proposed template extraction algorithm.

3.3.2 Parsing tree

Another commonly adopted heuristic method is the pars-
ing tree. Unlike the prefix trees in Sec 3.2, a parsing tree
approach employs bespoke encoding rules to match the
incoming logs. Drain [109], [148] is an archetypal example
in this vein. It relies on a fixed-depth parsing tree to cluster
raw log messages into groups. Each leaf contains a set of
log groups. Instead of comparing with all the groups, the
tree structure effectively bounds the number of log groups
each new message needs to traverse. A set of filtering rules
are configured in the internal nodes to guide the search
of the most suitable leaf node: the first-tier nodes match
incoming messages by their lengths, and the following n tier
nodes match messages by their preceding n tokens. When a
message reaches a leaf node, it is assigned to the group with
the highest per-token similarity.

Like Drain, OLMPT [110] proposes a two-level parsing
tree to match logs. First-level children store the message
length starting from the root, while second-level children
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sequentially store the initial token characters. OLMPT tra-
verses the tree for each new log message and matches the
most similar template by a character-wise score. Instead
of fixed depth and encoding rules, USTEP [111] relies on
an evolving parsing tree for log parsing. It dynamically
encodes rules on the intermediate nodes and incrementally
matches each incoming log message to a leaf node. AECID-
PG [112], [149] constructs a parsing tree on-the-fly follow-
ing four predefined rules. Each node is assigned a set of
path frequencies to reflect different token sequences. It also
allows defining a list of delimiters to flexibly tokenize the
raw log messages. SHISO [113] also adopts a parsing tree
to classify incoming logs based on token-wise Euclidean
distance. Based on the search result, the log message is
either merged into an existing node or added as a new node.
After that, a format search algorithm is instantiated to refine
existing cluster templates.

3.3.3 Machine learning

In recent years, Machine Learning (ML) has experienced un-
precedented success in Natural Language Processing (NLP).
As logs have similar features to natural languages, some
solutions explore ML/NLP techniques.

NLP-LP [114] applies tokenization, semantic process-
ing, vectorization, model compression, and classification
techniques to find the optimal combination. According to
the experimental results, it combines Latent Dirichlet Al-
location and bi-gram to achieve high-quality log parsing.
Li et al. [34] employs Hidden Markov Models (HMM)
and a modified Naive Bayesian Model to classy logs and
capture their temporal characteristics. Kobayashi et al. [115]
employ the Conditional Random Fields [150] model to infer
event templates by learning the structure of log message
and exploring positional relations of words. McLean et
al. [23] advocate adopting named entity recognition and
NLP operations to train models on historical log data and
incrementally learn the patterns and attributes therein. The
trained models can then be utilized or customized to parse
new logs. FastLogSim [116] trains a TF-IDF model [151]
to identify similar log patterns, which are then merged
with their templates extracted. LogParse [118] leverages the
templates extracted by existing log parsers and uses an ML
model (e.g., SVM) to train a classifier that can incrementally
identify constant tokens and learn new log formats.

Some solutions employ the more sophisticated Neural
Network (NN) models to augment existing NLP models.
Thaler et al. [119] employ a five-layer neural language
model to rebuild the original characters and predict the
constant/variable parts of log messages. Then in [152], the
same authors explore the recurrent neural networks (RNNs)
with an LSTM encoder [153], which uses an RNN auto-
encoder for log message embedding and an algorithm to
classify messages in the embedding space and infer the
event templates. Rand et al. [120] and Ruecker et al. [121]
also employ LSTM to parse unseen log formats. In par-
ticular, FlexParser [121] employs stateful LSTM to capture
parsing patterns across the training epochs and extract
templates from the evolving log messages. LogDTL [122]
constructs a deep transfer neural network model for log
template generation. The model employs a transfer learning
method to augment data training. LogStamp [29] treats log



parsing as a sequential labeling problem. Given the histor-
ical logs, it employs a pre-trained bidirectional transformer
to extract the relevant features. Then it employs a dual-path
framework to extract the word embedding and labels, which
are used to train a classifier that can perform online log
parsing. NuLog [117] embraces self-supervised learning. It
employs masked-language modeling to randomly mask the
input tokens, vectorized and positionally encoded to be fed
to a two-layer NN encoder. A final linear layer takes the
resultant matrix and maps the log messages to their vector
representation. Then the model dynamically processes new
logs by masking each token to identify variables and gener-
ate the corresponding event templates.

3.3.4 Other heuristic approaches

Besides the LCS, parsing tree, and ML/NLP approaches,
another group of log parsers uses other specialized heuris-
tic approaches. Some of these solutions parse logs using
a single heuristic algorithm, while others apply multiple
heuristic algorithms to explore log features. We present all
of them in this part.

Several solutions parse logs using a single heuristic
algorithm: Gao et al. [123] propose a search-based algorithm
to browse the raw messages and extract event templates
from multi-line log messages; Chuah et al. [124] propose to
construct event templates based on the simple assumption
that the variable parts of a log message are composed of
alphanumerics; LEARNPADS [125] employs a learning al-
gorithm to refine log formats iteratively until all the log mes-
sages are successfully parsed; Baler [126] employs a heuris-
tic algorithm to extract log templates based on token-integer
hash mapping and predefined attributes; MoLFI [127] mod-
els log parsing as a multi-objective optimization problem
and solve it with an evolutionary algorithm. It employs a
two-level encoding schema to represent the event templates
and applies the uniform crossover and random mutations
to obtain new templates. Ultimately, it returns a Pareto
Optimal partition with different trade-offs for the users to
select.

Other solutions employ multi-step partitioning with dif-
ferent rules or heuristic algorithms to fully explore various
characteristics of the input logs. For instance, Lopper [128]
first groups logs by length and then by the similarity ratio
of identical positional tokens. Then the obtained groups are
merged according to a similarity function. In the final step,
the template for each group is extracted. Two templates are
combined if they share the constant parts. CLF [129] follows
a two-step approach to partition input logs by the initial
token and length. Then it counts the occurrence of tokens on
each position to identify the constant parts. Each partition
splits the log messages based on the previously identified
constant token positions and extracts the corresponding
templates. POP [130] first partitions input logs by length,
and then it employs a heuristic method to partition by token
position recursively. Templates for each group are generated
by counting the distinct positional tokens. IPLoM [56], [154]
employs a three-step approach for log parsing. First, it scans
all the log messages and partitions them by message length.
The resultant partitions are further divided by positional
token frequency and a bijection search algorithm. Finally,
the template of each group is extracted by checking the
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tokens on each column. A column with only a unique
token is considered constant; otherwise, it is regarded as
a variable piece. Paddy [131] parses logs using an inverted
index dictionary that maps existing tokens to a list of log
templates. Tokens of each new log message are used as refer-
ence keys to retrieve candidate templates from the inverted
index. The candidates are then ranked and selected based
on the Jaccard similarity and length. AEL [2], [155] is based
on the clone detection technique [156]. It employs several
heuristics to identify variable tokens for each log message
and group messages with similar tokens and parameters
into bins. Finally, it extracts the event template for each bin.

3.4 Program analysis

Besides the aforementioned data-driven solutions, program
analysis is another broadly adopted approach by different
log analysis applications [157], [158]. Although solutions
based on program analysis are less practical than data-
driven ones, we include them in our survey for complete-
ness. Some log parsers also extend source code analysis of
system programs to pinpoint the related logging printing
statements. For example, Xu et al. [132] convert raw logs
into a schema with message type and message variables.
Then they get all the logging statements from the source
code to match each log message. Yuan et al. [48] leverage
source code with the related abstract syntax tree to generate
regular expressions to parse log messages. Developers must
annotate the logging statements and complex format strings
to facilitate the process. Tak et al. [133] employ code analysis
to identify the logging statements and compose regular ex-
pressions for log parsing. They also devise a text clustering
algorithm to expand the parsing coverage. Although this
approach renders optimistic results, the logging statements
are not always easy to locate since developers may employ
convoluted function calls. Moreover, the source code of
many systems is usually unavailable due to intellectual
property restrictions.

Some solutions further perform executable analysis to
cope with these issues. For instance, Genlog [134] disas-
sembles the target executable code and finds all the related
log functions through a hybrid slicing approach. Then it
reconstructs the log messages and employs data flow and
taint propagation analysis to generate log templates. Zhao
et al. [135] analyze the binary code and find all the logging
statements through a keyword search. The signature of each
statement is represented as regular expressions that are used
to identify the event template of each log message.

4 PERFORMANCE AND OPERATIONAL FEATURES

Despite the abounding solutions, correctly choosing and
configuring the most suitable ones is still a daunting task.
As existing log parsers are implemented with different
algorithms, they have divergent performance features and
configuration complexities. Misconfigured parsers can lead
to severe performance degradation for the ensuing log min-
ing and analytic tasks. As a result, we devote this section
to empirically analyzing the performance (Sec. 4.1) and
operational features (Sec. 4.2) of the existing solutions.



4.1 Performance features

We review two key quantitative features in this work,
namely the parsing accuracy and execution time of the existing
solutions in Sec. 4.1.1 and Sec. 4.1.2. Due to the abound-
ing solutions and the absence of source code for a subset
of them, quantitatively comparing the performance of all
the existing solutions is impractical. Therefore, we conduct
our empirical analysis in a hybrid fashion, combining the
available literature results and the quantitative evaluation
of open-source log parsers.

4.1.1 Parsing accuracy

Conventionally, there are three traditional metrics to mea-
sure the effectiveness of information retrieval, i.e., Precision,
Recall, and F-Measure (FM). The precision is the ratio of
correctly parsed log pairs over the total pairs generated by a
log parser. By definition, recall is the ratio of correctly parsed
log pairs over the actual total log pairs. Precision and recall
are calculated as follows:

TP
Precision = ————— 4
recision TP+ PP (4)
TP
Recall = TPLFN 5)

In the context of log parsing, given N raw input log

. N(N-=1) . o
entries (i.e, ——5— message pairs), a true positive (TP)
decision correctly identifies two log messages of the same
type, a false positive (FP) decision arbitrates two log mes-
sages of different types to the same group. In contrast, a
false negative (FN) decision parses two log messages of
the same type to different groups. Precision and recall can
reflect the effectiveness of existing solutions. Under-parsing
can produce more false positives and degrade precision,
while over-parsing can lead to more false negatives and hurt
recall. F-Measure (or F-score) is purposed to balance these
two metrics, and it is calculated as follows:

(B2 + 1) - Precision - Recall
B2 - Precision + Recall

where £ is conventionally set to 1. Although FM can reflect
log parsing accuracy, it only accounts for the correctly
parsed log pairs, which is insufficient for log parsing. Ac-
cording to the definition of FM, two log messages of the
same type are still considered a correct pair even if they are
parsed into a group different from the rest of the same-typed
log messages. Instead of FM, Du et al. [147] proposed the
Parsing Accuracy (PA) to account for the ratio of correctly
parsed log messages over the total number of log messages.
PA is formally calculated as:

FM =

(6)

#Correct_Messages
#Total_Messages

For the numerator in equation 7, log messages belonging to
the same event type are considered correctly parsed if and
only if all of them are parsed to the same group; otherwise,
none of these messages is regarded as correct. Therefore, PA
is more strict than FM and is more suitable for evaluating
log parsing accuracy. We thus choose PA as the accuracy
metric for our experiments.

According to our literature review, approximately 50
papers evaluated the performance of different log parsers.

PA =
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Fig. 5: The average F-Measure for some log parsers extracted
from the literature
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Fig. 6: The average PAs for some log parsers over heteroge-
neous logs evaluated in prior works

These works used a variety of public/proprietary log
datasets to compare the selected log parsers in terms of
standard or customized performance metrics. Most of these
related works used FM and PA to characterize the accuracy
of existing log parsers®. Therefore, we first capitalize on the
numerical results in the literature to empirically understand
the achievable accuracy for existing solutions. We thus
collect all the numerical results and calculate the average
FM and PA of existing log parsers in Fig. 5 and Fig. 6.
Although the comparisons are biased because the evaluation
datasets and runtime configurations were not precisely the
same for all the log parsers, they can still help us develop
a general idea. As we can observe, most log parsers can
achieve > 80% FM, and some can even reach > 90%.
Although PA is more strict than FM (as explained
before), most of the parsers can still attain > 60% PA,
which is reasonable given the heterogeneity of the valida-
tion logs. Their accuracies are expected to improve with
proper parameter tuning and preprocessing (which will be
discussed later). In general, state-of-the-art solutions such
as SLCT [93], LogMine [7], LogSig [91], LKE [41] generally
perform worse than newly proposed ones, partially because
they are more widely evaluated than the latter. Although
some newly proposed solutions, such as FastLogSim [116],
ENG [97], FLP [88], and One-to-One [90], can achieve near

2. Note that some related works evaluated log parsing accuracy with
Rand Index (RI), is calculated as %. We omit RI in our
study since it is not as commonly employed as the FM and PA. Please
refer to [29], [50], [90], [100], [129] for Rl-related evaluation.



TABLE 4: Main characteristics of LogHub’s 16 datasets

Message length (2k) | #Templates

Dataset #Log entries (min/avg/max) k)
BGL 4,747,963 14/47/409 120
HDFS 11,175,629 8/57/425 14
HPC 433,490 6/24/326 46
Proxifier 10,108 32/52/125 8
Zookeeper 74,380 7/42/295 50
Linux 25,567 8/57/138 118
HealthApp 253,395 7/48/141 75
Apache 56,481 22/47/62 6
Spark 33,236,604 17/49/152 36
Hadoop 394,308 12/82/437 114
OpenSSH 655,146 23/64/106 27
OpenStack 207,820 51/76/178 43
Windows 114,608,388 16/88/297 50
Android 1,555,005 7/78/320 166
Thunderbird 211,212,192 7/62/761 149
Mac 117,283 9/94/1138 341

100% FM, their high accuracies can be biased since they
were only tested with a few datasets.

Although the results are favorable, some solutions were
only evaluated on a few datasets, and it is unclear if they can
sustain similar effectiveness on other system logs. Therefore,
we complement existing works by thoroughly evaluating
the open-source log parsers. We specifically measure the PA
of 17 open-source log parsers, namely LogSig [91], LKE [41],
SLCT [93], LFA [96], MoLFI [127], SHISO [113], LogClus-
terr [95], LogMine [7], AEL [155], Spell [104], LenMa [84],
IPLoM [56], Drain [109], Logram [27], Paddy [131], Nu-
Log [117], and SwissLog [43]. The first 13 solutions’ source
code is provided by the LogPAI team [60], [68]. Note that
other projects such as amuLog [58] and LogParse [118] also
provided implementations for some of these log parsers
(e.g., Drain, LogSig). We decided to stick to LogPAI’s solu-
tions as they are more adopted in the community. There are
several other open-source solutions (e.g., FLP [88], Pylogab-
stract [92], and LogDTL [122]). We exclude them from our
evaluation due to a lack of information or limited customiz-
ability, and integrating them is left for future work. Note
that for all the experiments in the following sections, we
opt to reuse the benchmarking procedure of LogPAI [159]
because of its superior completeness and accessibility.

We reuse the 16 datasets of LogHub [70] to validate
the PA of these solutions. The main characteristics of these
datasets are shown in Table 4. Each dataset has 2k log entries
randomly sampled from the original system logs, and the
ground-truth event types and log templates have already
been manually extracted for validation. These datasets cover
a variety of ICT systems, including distributed computing,
operating systems, supercomputers, and software apps, and
performance evaluations across this dataset ensemble can
reasonably validate the effectiveness of a log parser over
heterogeneous logs [70]. Following the approaches by Zhu
et al. [68], We measure the PAs of the 17 log parsers on all
datasets. To ensure the optimality of the obtained results,
we extensively tune the parameters of each log parser. We
repeat the experiments ten times to obtain the averages for
non-deterministic solutions like LKE, MoLFI, and NuLog.
Note that NuLog was only evaluated on 10 of the 16
datasets because the authors did not provide the related
regex rules and parameters. We will discuss preprocessing
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and parameter tuning at length in the next section.

We plot the distribution of PA all the log parsers under
test in Fig. 7, ranked from left to right in ascending order
of the median. In general, no solution can consistently
prevail in all the test scenarios. Based on our observation,
the accuracy of each log parser varies on different datasets,
which is quite intuitive since each solution was designed
to explore specific features of system logs. The accuracy
will decrease if the input logs deviate from the expected
formats. For relatively simple datasets like Apache, almost
all the solutions can achieve 100% PA (except LogSig, which
presents the lowest overall accuracy, as it is challenging
to specify the cluster numbers beforehand). As the log
complexities increase, the accuracies of these solutions begin
to diverge. As we observe, the accuracy of IPLoM degrades
on system logs with highly varied message lengths; SLCT
and LFA cannot identify patterns below the threshold. The
most extreme case is MoLFI, which achieves only 0.8% PA
on the Proxifier dataset since it has difficulty distinguishing
event types with highly similar formats. MoLFI does achieve
74% FM on the same dataset, which means it under-parses
the identified messages, leading to extremely low PA. This
case also validates the necessity of using PA as the accuracy
metric over FM. Even the overall performant solutions still
possess deficiencies on specific logs, e.g., Drain performs
poorly on datasets with many leading variable tokens (e.g.,
Mac). NuLog and SwissLog achieve the best overall accu-
racy based on the obtained result. Other heuristic solutions,
such as Drain and AEL, also show promising results. In
general, heuristic solutions outperform the clustering- and
FPM-based approaches in log parsing accuracy.

4.1.2 Parsing time

Besides accuracy, parsing time is another critical perfor-
mance criterion, especially for real-time log analysis tasks.
Although users can estimate a log parser’s run time by
analyzing its time complexity concerning the number of
input log entries, this is inadequate in practice since there
can also be other impactful factors for each log parser.

We devote this section to characterizing the execution
time of 16 open-source log parsers with real system logs.
All the experiments are conducted on a commodity server
equipped with Intel Xeon CPU E5-2670 @ 2.3GHz (48 cores
across two NUMA nodes) and 64GB RAM. Each experiment
is executed on an isolated CPU core to reduce system-level
interference. Since the log parsers under tests are imple-
mented as single-thread applications, we assign one CPU
core to each solution for the latency test. Similar to prior
works, we keep the default parameters and preprocessing
rules. To ensure fairness, we use the online version of Lo-
gram (without the Spark acceleration). We exclude NuLog
from this evaluation as its neural network training is way
slower than other solutions, even with GPU acceleration.
We select 12 datasets from LogHub, i.e., the first 12 datasets
in Table 4, and randomly sample log entries to compose the
validation datasets. The sample sizes include 4k, 10k, 16k,
20k, 30k, 40k, 50k, 60k, 70k, 80k, 90k, and 100k. We measure
the execution time for each solution on all the datasets and
illustrate the results in Fig. 8. As some log parsers, especially
LKE, require excessively long execution time to parse large
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Fig. 7: The Parsing Accuracy distribution for some log parsers over heterogeneous logs.

log samples, we skip the experiments at some point to save
time, yet the general trend still holds.

As we observe from Fig. 8, the execution time of most
solutions can approximately scale linearly with the sample
size. The heuristic solutions achieve lower overall execution
time than other solutions. In particular, IPLoM, SwissLog,
AEL, and Spell consistently achieve low execution times,
and they can finish parsing 100k log files in around 10
seconds. These heuristic solutions use simple data structures
and control logic that significantly reduces the parsing time.
FPM-based solutions, such as LFA, LogCluster, and Logram,
achieve comparable execution efficiency to the preceding
heuristic solutions. The execution time of clustering-based
solutions, i.e., LKE, LogMine, and LogSig, also scales lin-
early with sample size, but they take considerably longer
to finish. LKE presents the highest parsing time due to its
O(n?) time complexity, making it incapable of processing
large datasets in a reasonable time. LogMine is also slow,
mainly because of its vast message merging overhead.
LogSig performs slightly better, but its clustering method is
still slow to converge, and its execution time also depends
on the starting point.

The execution times of other solutions are divergent
across different datasets even with the same number of
log entries, which means other factors can also impact
their execution time. For instance, LenMa is slower than
other heuristic solutions as it is less performant on datasets
with highly varied message lengths. MoLFI has comparable
results to LenMa on most datasets, but its execution time
increases significantly on distributed systems (e.g., Hadoop,
HDES, Spark, and OpenStack) with more diversified log
formats. SLCT is the only solution that scales less linearly
on most datasets because it relies on frequent tokens to
match the log messages for pattern mining. As the sample
size increases, so is its frequent vocabulary set, which conse-
quently increases the computation overhead of SLCT. This
phenomenon is particularly obvious on complex datasets
that contain large vocabularies, which explains the SLCT’s
sudden jump on complex datasets such as Spark, Hadoop,
and HPC.

4.2 Operational features

Besides the performance indicators, there are also several
noteworthy operational features, i.e., the parsing mode,
preprocessing, and parameter tuning. The parsing mode
alludes to a log parser’s compatibility with the ensuing log
analytics applications, while preprocessing and parameter
tuning reveal a log parser’s accessibility to average users.
This section summarizes and discusses these features com-
bining the benchmark results for the open-source solutions.
When applicable, we also discuss some alternative methods
we derived from the related works.

4.2.1 Parsing mode

Existing log parsers can operate in three different modes,
namely online, offline, and hybrid. Offline log parsers need
to process all the log messages in batches. Most early log
parsers, such as SLCT, LKE, LogMine, and IPLoM, operate
in offline batch processing mode. Intuitively, offline parsing
mode should lead to satisfactory performance as it allows
log parsers to scan all the messages and parse the logs with
a global view. However, offline log parsers cannot allow
real-time analytics, making them ill-suited for hyper-scale
distributed systems.

Many log parsers embrace the online streaming mode
to cope with this challenge. In fact, with the emergence of
more specialized heuristics, online log parsers have attained
comparable (if not better) performance than their offline
counterparts [27], [147], [148]. Online parsers such as Spell,
Drain, and SHISO operate on streams and can readily be
adapted for real-time data-driven analysis. They have two
significant advantages over offline solutions. First, online
parsers can interpret newly collected logs on the fly and
incrementally refine their internal parsing results without
going through the offline training phase, making them ideal
for real-time tasks such as system monitoring and fault
diagnosis. Offline log parsers generally fall short in this
regard. Some solutions, such as LKE and LogSig, can take
days to parse large datasets. Second, unlike offline solutions,
online parsers do not need to load the entire input data
(which can be prohibitively huge) into the memory space,
making them more accessible to users that do not possess
enough resources.
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Fig. 8: The log parsing time of 16 open-source log parsers on sample datasets with different numbers of log entries.

Besides these two standard modes, some log parsers
operate in a hybrid mode, which entails an offline training
phase and an online parsing phase, just like a typical ML
pipeline. For instance, NuLog requires offline training to
populate the model parameters via backward propagation.
After that, it serves the model and parses the input logs
online. This self-supervised approach can better learn the
characteristics of logs from different sources and overcome
the limitations of heuristic approaches that fail to generalize
for unobserved log formats. According to our benchmarking
results, NuLog presents the highest overall parsing accuracy
on ten datasets. Such advantages have also been observed
by other hybrid-mode log parsers [75], [77], [122]. Although
more extensive evaluations are still needed to prove the

validity of these solutions, the hybrid mode presents an
intriguing future direction.

4.2.2 Parameter tuning

Many existing log parsers expose some parameters to allow
users to fine-tune the performance. Nonetheless, for three
reasons, correctly tuning these parameters is a non-trivial
task. First, the exposed parameters usually have distinct
sensitivities on the input logs, which can only be under-
stood through extensive benchmarking. For example, SLCT
exposes a support threshold to locate frequent words from
the input logs. An overly strict threshold cannot identify all
the relevant tokens and their associated patterns, while an
overly loose threshold furthers the computation overhead
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Fig. 9: The general impact of parameter tuning.

and may cause overfitting [95]. Second, the tunable parame-
ters may implicitly impact each other, which requires a joint
evaluation campaign to find the most suitable combination
of parameters. Third, the tuning process must be repeated
for new logs to guarantee the best log parsing results [68].

We devote this section to investigating the impact of
parameter tuning. Starting from the default values, we
sensibly perturb the parameters for each solution and collect
the obtained PA. The same procedure is repeated on all
the labeled 2k datasets in Sec. 4.1.1. To reflect the impact
in a general sense, we calculate the ratio of optimal PA
over the average PA, as illustrated in Fig. 9. We notice that
some solutions from the LogPAI team slightly differ from
the original papers. In this case, we opt to use LogPAl's
implementations. According to our study, more tunable pa-
rameters do not necessarily mean higher tuning overhead.
Some log parsers are relatively easy to tune because their
parameters have negligible sensitivity. For instance, SHISO
exposes four tunable parameters, i.e., the maximal child
nodes and three format thresholds, that have little impact
on the accuracy. IPLoM has five tunable parameters, but
these parameters also have a minimal impact.

Conversely, some log parsers only expose a few param-
eters that require considerate tuning. For instance, Spell’s
message type threshold can strikingly impact accuracy (=~
40%). According to our experience, NuLog has the highest
parameter tuning overhead. It exposes three parameters, i.e.,
#epochs, k, #samples, that can cover a vast range of values.
The #epoch value has to be carefully tuned across different
datasets, and % can only be fixed via cross-validation. We
failed to attain even 20% PA on the Linux dataset. These
solutions require a deep understanding of their design
internals and data characteristics, which can be highly chal-
lenging for average users. One way to reduce this overhead
is to tune parameters on small samples and directly apply
them to larger datasets. Although this transferred parameter
tuning performs decently in some cases, many solutions still
fail to sustain satisfactory performance on large system logs
with more disparate data attributes [60].

Some solutions are designed without requiring manual
parameter tuning. For example, LFA, SwissLog, and Paddy
automatically shield users from this potentially overwhelm-
ing undertaking. Other solutions have also embraced such
an approach: Slop [106] defines a non-linear threshold crite-
rion that can adapt to several system logs and thus does
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Fig. 10: The general impact of preprocessing

not require manual parameter tuning; LogSimilarity [52]
employed an online classification algorithm to adjust the
involved parameters incrementally. Although present re-
search on automatic parameter tuning is still limited, it is a
promising direction to implement new solutions that can be
adaptive to different settings without human intervention.

4.2.3 Preprocessing

Besides parameter tuning, existing solutions rely heavily on
human involvement for preprocessing, which may include
interpreting raw log messages, removing irrelevant seg-
ments, and substituting redundant tokens (e.g., timestamps,
IP addresses, unique identifiers) to reduce the parsing noise.
All the open-source solutions we have evaluated rely on
empirically composing regular expressions for preprocess-
ing. According to prior research, log parsers can generally
benefit from fine-grained preprocessing based on the charac-
teristic of the input logs. However, this has to be conducted
with caution, as incorrect preprocessing may inversely lead
to performance degradation [60], [116], [130]. It is thus
necessary to understand the impact of preprocessing on
existing log parsers.

In this part, we rerun the accuracy tests without the
preprocessing process on all the 2k datasets and compare
the difference with the original accuracy. The regular ex-
pressions were empirically composed by the LogPAI team
for each dataset. These rules only perform basic textual
processing and can exhibit the bottom-line impact on each
solution. The average PA difference with and without pre-
processing for each solution is depicted in Fig. 10. According
to the results, preprocessing has little impact on Drain,
SwissLog, and IPLoM, making them more accessible to
average users without prior knowledge. On the contrary,
SHISO, LKE, and Spell show the highest overall difference
(> 15%). SLCT, Paddy, Lenma, and LogCluster are also
sensitive to preprocessing (> 10%). In particular, Lenma and
LogCluster can only achieve 0.1% PA without preprocessing
on the Proxifier dataset. NuLog’s preprocessing requires
specialized tokenization and masking filters, which require
prior knowledge of the log formats. We do not present
NuLog’s result in Fig. 9, as we are uncertain of the filters
for all test datasets. These solutions require more specialized
preprocessing rules to unleash their full potential. We have
also found a negative result for LFA’s accuracy, reflecting its
particular preprocessing rules requirement.
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TABLE 5: A summary of the 17 open-source log parsers under evaluation

Performance features

Operational features

L [ Average accuracy | Parsing time i Parsing mode Parameter Tuning [ Preprocess.
08 parsers | FM (%) PA (%) | Complex. Latency |[ Offline Online Hybrid | Parameters Impact | Impact
SLCT [93] 88.98 62.94 O(n) medium v support medium high
S LFA [96] 93.20 64.33 O(n) Tow v — zero high
& [ LogCluster [95] 92.77 65.25 O(n) Tow v rsupport high high
Logram [27] 81.73 53.57 O(n) Tow v double-/tri-Threshold high medium
28 LogSig [91] 90.03 52.93 O(n) medium v groupNum high medium
5 LKE [41] 78.80 61.33 O(n?) high v split_threshold high high
‘u;a LenMa [84] 93.63 76.64 O(n) medium v threshold medium high
5 LogMine [7] 93.62 73.52 O(n) high v max_dist k,level low medium
AEL[2, (155 | 9681 7912 | O(n) low v miinEventCount, low medium
merge_percent
" MoLFI [127] 88.94 60.67 O(n?) high v — zero low
£ | IPLoM [56] 9676 7566 | O(n) low v CLELPT low low
g ) ) lowerbound /upperbound
% maxChildNum
o . mergeThreshold .
& | SHISO [113] 9209  67.80 O(n) medium v forma tL%DkupThmhol g low high
:‘5 superFormatThreshold
5 Drain [148] 97.74 86.54 O(n) Tow v st, depth medium low
f Spell [104] 96.07 79.26 O(n) medium v tau high high
NuLog [117] 97.13 94.31 - high v #epochs, #samples, k high high
Paddy [131] 89.63 7143 O(n) medium v - zero high
SwissLog [43] 99.56 93.29 O(n) Tow v - zero low

Although existing solutions widely use regular expres-
sions, they are too general and fail to provide customized
preprocessing for individual log parsers. We have even
observed sightly decreased accuracy in some rare cases due
to improper preprocessing (e.g., LFA). To this end, some
other log parsers propose more advanced preprocessing
procedures. For example, POP [130] provides two types of
preprocessing functions for users to trim redundant fields
and prioritize specific log events. Aside from the empirical
understanding of input data, some solutions can benefit
from detailed knowledge of the target systems. For instance,
LogTree [24] relies on grammar parsers to preprocess log
data and build the hierarchical message segments. These
grammar parsers are highly dependent on specific system
programs and usually require prior knowledge of the rel-
evant domains. Users can also specify different clustering
algorithms based on their needs, e.g.,, LEARNPADS [125]
requires a user-specified log format description to prepro-
cess log entries. Although these solutions enable more so-
phisticated parsing by consolidating user experiences and
domain-specific knowledge, they are also more difficult for
average users to master.

Another critical aspect of preprocessing, as pointed out
by existing works [67], is how to handle the delimiters for
heterogeneous logs. Most existing solutions, such as Spell,
consider the commonly used signs such as space and equal
as delimiters. Nonetheless, such an assumption does not
always hold due to the free-text nature of system log mes-
sages, which can result in unexpected parsing errors [56].
Some solutions try to tackle this issue by simultaneously
considering multiple signs as delimiters [43], [97], [112].
For instance, SwissLog employs a set of 5 delimiters ({,
.5+ ”}) to tokenize the raw log messages more precisely.
One-to-One allows users to specify the delimiters based
on knowledge of the input log formats. Although these
methods can alleviate the tokenization mistake, they cannot
altogether avoid it since log entries can always employ
more distinctive characters as delimiters. To overcome this

limitation, Wurzenberger et al. [160] proposed a character-
based log parser that performs a character-wise comparison
to evaluate the similarity of two log messages, avoiding the
entire tokenization step. Although their evaluation results
were promising, this novel approach is still in its infancy,
and more extensive benchmarking is needed to validate its
applicability and performance thoroughly.

Summary

To sum up, we epitomize all the relevant performance
and operational features of the 17 open-source solutions in
Table 5. In particular, we list the average FM and PA for
each solution for parsing accuracy. For the parsing time,
we list both the time complexity and the general latency
(derived from the evaluation of Sec. 4.1.2). For parameter
tuning, we enumerate all the parameters and their overall
impact on the final results. We have also shown the impact
of preprocessing on the outcome. Although we cannot com-
prehensively evaluate all the existing solutions due to the
lack of information, our benchmarking campaign can guide
IT professionals in choosing the most suitable open-source
solutions. Whenever applicable, we have also discussed the
operational features of some closed-source solutions, which
can be reused to implement new solutions.

5 CHALLENGES AND FUTURE DIRECTIONS

Despite the manifold solutions and overall robust outcomes,
log parsers still face limitations that prevent them from
pervasive deployment in a production environment. This
section contemplates future challenges for log parsing tech-
nology and discusses the potentially relevant directions
from the systems perspective.

5.1

Like any data-driven approach, log parsers require abun-
dant labeled datasets to validate and optimize performance.
Unfortunately, Although these datasets have tremendously

The scarcity of public datasets



boosted the advancement of log parsing, real-world system
logs (especially those from production environments) are
still sought to increase the diversity of available data [60].
Since the performance of log parsers fluctuates substan-
tially across datasets, the lack of data diversity hinders
the continuous improvement of log parsing solutions. He
et al. [130] tried to mitigate this problem by procedurally
generating derivative samples with diversified properties
from original public datasets, and Nguyen et al. [122] ex-
plored transfer learning techniques to alleviate data scarcity.
However, these are not sustainable solutions in the long
run. It is critical to collect, label, and disclose more logs
from real systems, services, and applications to facilitate the
design and validation of novel log parsers, which calls for a
concerted effort from industry and academia.

5.2 Limited generalizability

Albeit existing log parsers can generally achieve sound
outcomes, they still inevitably suffer from inaccuracies on
most log datasets. As discussed in Sec. 4.1.1, these effects are
caused by the intrinsic limitations of each existing solution
with specific log properties such as the log size, message
length, event distribution, and vocabulary size. Although
the accuracy of a log parser can always be improved
with more specialized heuristic algorithms and optimization
techniques, it is challenging to keep pace with the rapid
emergence of new log types induced by system requirement
evolution.

As each log parser has specific performance charac-
teristics on different datasets, one possible direction is to
combine multiple parsers to compensate for the drawbacks
of a single solution and thus enhance the overall perfor-
mance. For instance, Xie et al. [161] proposed a p-value
guided approach that aggregates all the templates extracted
by four state-of-the-art log parsers, including IPLoM [56],
LogCluster [95], AEL [155], and Spell [104] to improve the
effectiveness of anomaly detection for the industrial IoT
systems. According to their evaluation results, the proposed
method achieved higher accuracy than any single log parser.

Another orientation is to exploit advanced Machine
Learning (especially Deep Learning (DL)) techniques for
sustainable performance. Our taxonomy involves some ML-
based log parsers, as discussed in Sec. 3.3.3. These solu-
tions have already shown encouraging outcomes. In par-
ticular, as one of the 17 evaluated open-source solutions,
NuLog [117] achieves the highest accuracy on ten public
datasets. Although the effectiveness of these solutions still
requires further validation, we believe they can deliver
more promising results with the rapid advancement of DL
techniques. Based on our experience with NuLog, the high
configuration difficulty and slow training process are two
potential drawbacks for the DL-based solutions. They can
be alleviated via system-level automation and acceleration,
which will be thoroughly discussed in the following two
subsections.

5.3 Lack of automation

Although existing log parsing solutions aim to enable au-
tomatic log analysis, most still rely heavily on human inter-
vention to achieve satisfactory performance. As discussed in
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the previous section, empirical and domain-specific knowl-
edge can play a decisive role for a log parser, especially dur-
ing the parameter tuning and preprocessing phases. Also,
as modern ICT systems are highly dynamic and constantly
evolving, log parsers must deal with a perpetual shift in
concepts and data contents. Existing solutions usually ne-
glect this level of automation, which hinders their adoption
in real systems.

In AI/ML domain, MLOps frameworks such as Air-
flow [162], Kubeflow [163], and MLflow [164] can auto-
matically manage the end-to-end orchestration of machine
learning workloads. As log parsers have a similar workflow,
they can significantly benefit from a functionally equivalent
framework that automates their delivery process, includ-
ing log collection, data preprocessing, parameter tuning,
algorithm training, continuous validation, and incremental
deployment. Such a framework can significantly expedite
the integration of log parsers in the production environment
to facilitate advanced analysis and management.

5.4 Insufficient system-level acceleration

Existing log parsers have incorporated many algorithmic
techniques to accelerate processing. However, they need
to consider system-level acceleration more to scale up the
operation in real-world scenarios.

As the volume of system logs increases, so does the
resource footprint for log parsers. We believe log parsing can
further benefit from system-level support for handling big
data [165]. For example, LogMine augmented with MapRe-
duce [166] can achieve up to 5x speedup with multiple
parallel workers [7]. Similarly, POP [130], Logram [27], De-
log [105], and Logan [133] were built on Spark clusters [167]
to benefit from the large-scale data processing capabilities.
Ren et al. [168] computed the weighted edit distance for LKE
using GPUs and reduced the processing time by roughly
90%. With the explosion of log data and the urgent need for
real-time analytics, log parsers must extend the necessary
support for heterogeneous accelerators (e.g., APIs, SDKs,
and GUIs). Such an extension can also smooth their inte-
gration with the ensuing log analytics applications already
popularly deployed on GPU and Big Data clusters.

6 CONCLUSION

This paper aims to provide a comprehensive survey of log
parsers. According to their log data classification and tem-
plate extraction methods, we exhaustively investigate exist-
ing solutions and organize them in an easily-accessible tax-
onomy. Then we systematically analyze their performance
metrics (accuracy and parsing time) and operational fea-
tures (parsing mode, parameter tuning, and preprocessing),
extracting a consistent set of benchmark results on the most
prevalent open-source solutions. This survey provides a
reasoned first-hand guideline of the entire research space of
log parsing. This work can also help practitioners select the
most appropriate open-source solutions. We also envision
future directions to promote the continued development of
novel parsing techniques that may befit the evolution of log
analysis requirements in modern ICT systems.
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