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1 INTRODUCTION
Software packet processing has always been a relevant so-

lution for both industry and academia. Because of its un-

paralleled flexibility with respect to proprietary hardware

solutions, software packet processing is widely used for the

prototyping and debugging of new protocols. While soft-

ware packet processing has usually been several orders of

magnitude slower than its hardware counterpart, the situa-

tion started to change with the emergence of fast packet I/O

libraries such as netmap [7] and Data Plane Development

Kit (DPDK) [5]. Of particular significance, we now assist to

the advent of flow-level high-speed applications that either

provide per-flow fairness [3], or propose a high-performance

user-space flow-level network function framework [4].

The emergence of such applications requires not only to

generate but also to monitor traffic flows in real-time, which
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Figure 1: The configuration of FlowMon-DPDK

is particularly relevant for stress-tests during the develop-

ment phase. However, few tools are capable of high-speed

flow-level monitoring in the worst-case scenarios (i.e., 64B

packets at line rate) without sampling and by using a limited

amount of resources; the latter property is of paramount

importance when the monitor is co-located either with the

traffic generator (to allow more complex traffic patterns) or

with the device under test (DUT). As an example, DPDK-

Stat [8] focuses on advanced traffic analysis (e.g., including

full-payload TCP flow reconstruction and deep packet in-

spection) at 40 Gbps line rate using commodity hardware,

it does however consumes all the available resources, and

geared towards post-processing analysis. Similarly, other

tools exist in the literature for monitoring incoming traffic

but rely on heavy sampling [2], occupy too many resources

or do not focus on worst-case scenario [1, 8].

In this demo, we showcase FlowMon-DPDK [10], our soft-

ware traffic monitor capable of both packet- and flow-level

statistics by using a limited amount of resources, and that

we make available as open-source project [9].

2 FLOWMON-DPDK DESIGN
The typical usage scenario for stress-testing a network de-

vice is shown in Fig. 1: a traffic generator (TX) transmits

packets at line rate to the device under test (DUT), which

forwards packets to a traffic monitor (RX). In order to mini-

mize the amount of resources, in [10] we carefully analysed

the design space and adopted the solutions yielding the best

performance.

In essence, for a 10 Gbps link, FlowMon-DPDK uses 2

hardware queues to split the traffic load over 2 cores. Note
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that we expect to easily extend the maximum sustainable

capacity beyond 10 Gbps by using for example 20 cores (i.e.,

a second CPU on a different socket) for capturing 100 Gbps,

provided that the PCI Express bus does not become the bot-

tleneck. RX thread polls packets from the NIC ring buffer,

transfers them via a software ring to the monitor thread.

This thread continuously polls packets from the dedicated

software ring and implements FlowMon-DPDK main pro-

cessing functionalities. FlowMon-DPDK is capable of both

per-packet or per-flow monitoring. While packet counting

can be done directly by the hardware, per-flow counting is

only minimally facilitated: particularly, to avoid the over-

head of computing a hash over the packet header, we re-use

the 32-bit hash computed by the NIC for flow identification.

FlowMon-DPDK uses a double-hash table with a vari-

able number of entries (2
16
by default). Each entry contains

two static flow buckets, and each bucket contains a packet

counter (plus additional statistics if properly configured)

which is updated when packets belonging to the correspond-

ing flow arrive. If there are more than two flows indexed

to the same entry, a linked list is used to store additional

flows. FlowMon-DPDK supports also advanced per-flow op-

erations, such as computing the flow interleaving degree (i.e.,

the number of packets of other flows in between two packets

of the current flow) as well as first, second and higher-order

moments of the variables of interest (e.g., flow rates, inter-

leaving degree distribution, etc.).

3 FLOWMON-DPDK DEMONSTRATION
3.1 Setup
The testbed comprises one server, equipped with Xeon E5-

2660 v3 2.60 GHz CPUs (with L1-L3 caches 32/256/25600 kB)

and 2 Intel
®
82599ES 10 Gbps NICs. Since we want to stress-

test the monitoring applications with the maximum line

rate, we directly connect the TX and RX without any DUT

(i.e., the DUT is a lossless fiber cable), thus the two NICs are

directly connected through an optical fiber. As TX, we deploy

the MoonGen traffic generator while FlowMon-DPDK as

well as the other monitoring tools are installed as RX. We

configure MoonGen to generate 5.2 billion minimum size

packets (64 bytes) at line rate (14.88 Mpps) from 65536 flows.

FlowMon-DPDK uses the 2 physical (Fig. 1) cores, and the

RX server is configured with optimal tunings (e.g., set the

CPU frequency scaling governor to “performance", disable

Turbo-boost, pin processes to dedicated cores, etc.).

3.2 Demo scenarios
In particular, we consider applications of increasing complex-

ity, notably: (i) hardware-based packet-level counting: native

DPDK application, (ii) software-based packet-level count-

ing: MoonGen and pktgen-DPDK (both based on DPDK but
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Figure 2: Hardware vs software solutions for packet-
vs flow-level monitoring: Average PDR of different
monitoring tools with 95% confidence interval.

wrapped using lua scripts) and Speedometer [6] (DPDK appli-

cation), with default configuration from GitHub or our own

tuned version, (iii) software-based flow-level packet count-

ing: FlowMon-DPDK and MoonGen (flow-level version).

All the tools are tested under the same scenario as FlowMon-

DPDK (256 packet batches, 4096 rx/tx descriptors, etc.), and

the primary performance metric we consider is the Packet

Drop Ratio (PDR). While all applications have different out-

puts, their ability to keep-up with the traffic is the first indi-

cation of the scenario they can be used with, as a large PDR

testifies inaccuracy in the reported results.

Fig. 2 shows the expected performance according to [10].

In particular, from left to right: (i) accessing hardware regis-

ters already yields to 10
−6

drops on our testbed, so that (ii)

packet-loss of software tools is higher for packet-level oper-

ations, (iii) where the (opportunely tune) Speedometer and

FlowMon-DPDK have similar performance (since both are

pure DPDK applications), and outperform MoonGen/pktgen-

DPDK, which reflects the overhead of adopting lua wrapper.

Finally, it can be shown that (iv) FlowMon-DPDK packet loss

rate only minimally increases with flow-level operations.

3.3 Demo workflow
The demonstration will allow users to interact with both

the TX and RX, notably: (i) altering the sending process

(e.g., number of flows, flow skew, etc.), (ii) changing the

enabled FlowMon-DPDK counters (e.g., packet-level vs flow-

level; flow-rate vs flow-burstiness; instantaneous values vs

cumulated vs mean vs high orders vs percentiles), (iii) in-

teracting with the monitoring CLI (quiet mode vs periodic

writing vs ncurses based terminal with sorted flows sta-

tistics). A video showing the demonstration is available at

https://youtu.be/B8uaw9UgMm0.
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