
1

Operationalizing AI/ML in Future Networks:
A Bird’s Eye View from the System Perspective

Qiong Liu, Tianzhu Zhang, Masoud Hemmatpour, Han Qiu, Dong Zhang, Chung Shue Chen, Marco Mellia, and
Armen Aghasaryan

Abstract—Modern Artificial Intelligence (AI) technologies, led
by Machine Learning (ML), have gained unprecedented momen-
tum over the past decade. Following this wave of “AI summer”,
the network research community has also embraced AI/ML algo-
rithms to address many problems related to network operations
and management. However, compared to their counterparts in
other domains, most ML-based solutions have yet to receive large-
scale deployment due to insufficient maturity for production
settings. This article concentrates on the practical issues of
developing and operating ML-based solutions in real networks.
Specifically, we enumerate the key factors hindering the inte-
gration of AI/ML in real networks and review existing solutions
to uncover the missing considerations. Further, we highlight a
promising direction, i.e., Machine Learning Operations (MLOps),
that can close the gap. We believe this paper spotlights the system-
related considerations on implementing & maintaining ML-based
solutions and invigorate their full adoption in future networks.

Index Terms—AI/ML for networking, Network Systems, Net-
work engineering

I. INTRODUCTION

To drive digital transformation, modern telecommunication
networks are undergoing a disruptive evolution. The ongoing
5G rollout promises to deliver customized network services
to billions of subscribers with ultra-high speed, ultra-high
reliability, ultra-low latency, and ubiquitous connectivity. The
massification of Internet-of-Things is expected to connect
trillions of devices and create brand-new business models.
Next-generation digital realms, e.g., Metaverse, also call for
high-quality, customizable communication mediums to drive
human-machine interaction and digital-physical fusion. These
technical headways inevitably make modern networks in-
creasingly diverse, decentralized, and complex. Traditionally,
networks were mainly managed by predefined or ad-hoc rules.
However, these methods either bear oversimplified assump-
tions about the underlying systems or incur huge computation
overhead, which disaccords with the continuing network com-
plexification. As of today, human participation is still essential
for in-depth problem diagnoses and decision-making.

Q. Liu is with the Department of Computer Sciences and Networks,
Telecom Paris, Palaiseau, France. (E-mail: qiong.liu@telecom-paris.fr)

T. Zhang, C. S. Chen, and A. Aghasaryan are with Nokia Bell
Labs, Massy, France. (E-mail: {tianzhu.zhang, chung shue.chen,
armen.aghasaryan}@nokia-bell-labs.com)

M. Hemmatpour is with Simula Research Laboratory, Oslo, Norway. (E-
mail: mashemat@simula.no)

H. Qiu is with the Institute for Network Sciences and Cyberspace, BNRist,
Tsinghua University, Beijing, China. (E-mail: qiuhan@tsinghua.edu.cn)

D. Zhang is with the College of Computer Science and Big Data, Fuzhou
University, Fuzhou, China. (E-mail: zhangdong@fzu.edu.cn)

M. Mellia is with the Department of Control and Computer Engineering,
Politecnico di Torino, Turin, Italy. (E-mail: marco.mellia@polito.it)

With the accruing breakthroughs over the last decade, mod-
ern AI/ML has achieved human-level performance in many
challenging tasks, e.g., computer vision, gaming, and, more
recently, natural language processing. Nowadays, AI/ML-
empowered products have permeated various industrial and
business sectors, including healthcare, manufacturing, enter-
tainment, and education. According to the findings of Gartner
and MIT Sloan Management Review, AI has led to $3.9T
of business value in 2022 and is deemed a strategic priority
by 83% of CEOs [1]. Inspired by these successes, network
researchers are extensively exploring AI/ML algorithms for
network automation and management. This new breed of
ML-based networking solutions1, i.e., applications, functions,
and services, has demonstrated more optimistic outcomes than
the traditional fixed-policy approaches [2].

Despite the enormous interest, AI/ML is still immature for
deployment in real networks. According to a recent report [3],
88% of the telco industry’s proof-of-concept AI/ML projects
fail to reach live deployment. The major deterrent stems from
inadequate “system thinking”. Based on our observation, exist-
ing AI/ML-based solutions have two fundamental disparities
with real-network deployments: (i) One-dimensional design:
ML solutions mainly aim to outperform prior solutions on
specific metrics, especially accuracy, without vetting other
network-/system-critical imperatives. For example, as net-
works usually become increasingly complex and intertwined,
optimization becomes multi-metric and multi-dimensional. (ii)
System discrepancy: These solutions were mostly demon-
strated in controlled environments and became costly to fit
into real network systems with much higher scale, complexity,
and dynamism. For instance, given the data-driven nature
of ML-based solutions, ensuring their performance under
sporadic data drifts and system evolutions is non-trivial [4].
Consequently, such a “reality gap” hampers the integration
and deployment of AI/ML in real networks.

In information technology (IT) industry, the development
and delivery of software products is usually streamlined via
Development and Operations (DevOps) practices, which are
further customized by the telco industry to enhance service
quality and reduce time-to-market [5]. Although network-
oriented DevOps practices offset part of the exertions via
continuous integration and delivery, they can hardly accom-
modate the unique characteristics of AI/ML [4]. To smoothly
operationalize (i.e., develop, deploy, and manage) AI/ML in

1Note that we focus on techniques of AI’s data-driven branch, frequently
denoted as ML. By abuse of language, we will use the two acronyms
interchangeably in this paper.

2

production, network operators must master skills in ML, data
engineering, and systems, which is extremely burdensome.

This paper aspires to elucidate the practical challenges of
integrating AI/ML into the future network landscape. Specif-
ically, we present network-oriented AI/ML research and its
gap with real networks in Sec. II. In Sec. III, we enumerate
the practical considerations to actualize AI/ML in production-
ready networks. Afterward, we prospect a promising direction
- Machine Learning Operations (MLOps), which closes the
gap of operationalizing AI/ML in telco networks in Sec. IV.

II. BACKGROUND

In this section, we briefly review the current status of
AI/ML and elaborate on the practical barriers obstructing their
pervasive adoption in operational networks.

A. Landing AI in Networks

In recent years, AI/ML has sparked tremendous hype in
the telco industry thanks to (i) the innovative breakthroughs
in theoretical research, (ii) the success in other fields such as
computer vision and NLP, and (iii) the presence of optimized
development toolkits with hardware acceleration. Compared
to fixed-policy approaches, AI/ML algorithms exhibit excep-
tional pattern matching, incremental learning, and automation
capabilities on large-scale, multi-dimensional data [6].

Standardization bodies (e.g., ETSI, 3GPP) anticipate AI/ML
techniques to play a pivotal role in automating future net-
works and have formed multiple working groups to investigate
different use cases [2]. In industry, carrier-grade platforms
are under active development to bolster AI/ML-augmented
network services: Nokia’s AVA Ecosystem offers telco oper-
ators cloud-native AI/ML and analytic services to automate
network operations, enhance service assurance and subscriber
experience and reduce cost [3]; Huawei’s ADN ecosystem
features network automation with dedicated support for AI
operations [2], which consists of three tiers, i.e., on-device AI,
online fog/cloud AI, and offline cloud AI, to support network
and AI operations with assorted temporal-spatial properties.
In academia, ML algorithms are widely developed to tackle a
large spectrum of “networking” problems, such as traffic clas-
sification [7], resource scheduling [6], anomaly detection [8],
load balancing [9], QoE management [10]. Given the rapid
expansion of the AI/ML frontier (e.g., generative AI), their
growth in telco networks will continue to enrich.

B. The reality gap

Despite the plethora of solutions, a closer inspection reveals
a less rosy picture - These solutions are generally inadequate
for live deployment in real network systems [3]. Based on our
study, such a reality gap originates from three factors:

Data complexity: Compared to other prevalent AI/ML
application domains, e.g., computer vision and language pro-
cessing, network data has much more diverse formats, e.g.,
raw packets, flow, configuration files, system logs, and event
alarms. They may contain categorical, temporal, spatial, or
even graph semantics. Such multi-modal data with high vari-
ety, velocity, and volume can be exceedingly onerous to model

and process [10], not to mention their natural distribution drifts
caused by data and system evolvements.

One-dimensional nature: Existing solutions generally fo-
cus on optimizing specific performance metrics rather than
comprehensively assessing the overall readiness, which is
incompatible with the stipulations of real-world ML systems.
In particular, some solutions strive for high prediction accuracy
using supersized Deep Neural Networks (DNNs) models that
can hardly fit into resource-limited network devices. The
potentially high inference latency can make them unsuitable
for real-time constraints. They may also interfere with the
critical data path. But most of all, in production networks, all
Key Performance Indicators (KPIs) are naturally intertwined
and must be jointly analyzed and attuned to network/system
constraints to avoid one-dimensional solutions.

Hidden technical debts: This term was coined by Sculley
et al. [11], which refers to the massive operational costs of
operationalizing ML-based systems by non-experts. Similar
debts also apply in network systems. As existing solutions
were mostly developed in simulated or controlled environ-
ments, the practical deployment and maintenance issues were
usually sidelined. In real systems, instead, ML models should
be deployed as part of a data-processing pipeline. Owing
to disparate development toolkits and deployment targets,
integrating them into real networks can be laborious and error-
prone. As network devices can come from sundry vendors with
bespoke configuration, optimization, and execution routines,
deploying AI/ML on them can result in complicated manual
tuning, customization, and feasibility tests. In addition, rather
than a one-off process, ML-based solutions must be contin-
uously upgraded to meet business requirements and sustain
long-term value over the rapid evolution of the telco industry.

III. OPERATIONALIZING AI/ML IN PRODUCTION
NETWORKS: THE STATUS QUO

To close the gap and seamlessly operationalize AI/ML in
production, many critical system-related considerations exist
throughout the ML lifecycle, i.e., data preparation, develop-
ment, and operations phases, as illustrated in Fig. 1. This sec-
tion encapsulates these considerations and explores associated
studies within the networking domain. The included works
were chosen based on two criteria: (i) they address one or
more practical aspects, and (ii) the methodologies proposed
have undergone implementation and verification within actual
network systems.

A. Data preparation

Data quality directly determines the ceilings of any AI/ML-
based product, spurring the recent trend towards data-centric
AI [1]. Due to the complexities in real networks, good datasets
are not always available. Ensuring data quality can averagely
cost 60% of time in AI/ML projects [3]. Special consider-
ations should be enforced upon data preparation to supply
the ML algorithms with high-quality data: the constituent data
acquisition and feature extraction processes.

3

Feature extractionData acquisition Algorithm design

Model

Training

Development (Sec. III-B) Operations (Sec. III-C)

Data/Model drift

Data preparation (Sec. III-A)

Data
collection

Data
labeling

Data
validation

Data
cleaning

Data
conversion

Model
selection

Architecture
speci�cation

Training & validation Deployment Management

Package Unit

test

Integration

test
Model

serving

Resource

management

Inference

monitoring
Validation

Model

tuning

Accuracy Ef�ciency
Resource

footprint

Fig. 1: ML lifecycle in production settings.

Data acquisition. In existing solutions, data can generally
originate from three sources: (i) live networks, (ii) controlled
environments, or (iii) (curated) public datasets. In case (i),
despite the multitudinous data measurement and collection
methods, the process can incur huge operational costs, which
obligates considerate tradeoffs [9]. For example, sampling is
usually prioritized over the per-packet collection in high-speed
networks to attenuate the impact on the traffic datapath. Also,
network data collection can incur uncontrollable situations,
such as packet drops, sampling biases, or schema changes,
hence aberrations and outliers [7]. Labeling the collected data
still remains a daunting problem as it consumes substantial
human effort and does not scale with the data volume and
scenarios. In cases (ii) and (iii), as data are from outside the
target networks, their statistical properties can be unaligned
with deployment assumptions, which leads to unexpected
consequences. The lack of labeled data (and datasets) often
limits the reproducibility and the solution generalization. Test-
ing in real environments becomes thus necessary to disclose
the potential biases/anomalies before model deployment. At
last, existing solutions often assume statistically stationary
input properties, making them susceptible to uncertainties and
novelties commonly found in real networks.

Feature extraction. Raw network data must be converted
to features conformant with the ensuing AI/ML algorithms.
Feature extraction is challenging - different feature sets imply
varied system costs (and model performance), thus merit closer
scrutiny: many existing ML-based solutions empirically define
custom features, which may become hard to obtain and scale
in deployment. Furthermore, feature selection schemes, when
applied, might face revamping upon network evolution.

Existing solutions: In contemporary network research, sev-
eral seminal works approached the practical challenges of data
acquisition and feature extraction: Bronzino et al. [10] intro-
duced Traffic Refinery, an efficient automation pipeline for
flow-level data collection and feature extraction. It aligns net-
work operator goals by consolidating multiple design choices
to alleviate packet losses. Additionally, a dedicated profiler
quantifies system-level costs, offering operators a trade-off
between feature selection and model accuracy. In a distinct
exploration, Yao et al. [9] proposed the Aquarius frame-
work to enable flexible data collection and feature extraction
for data center networks. This system embeds a transport-
layer collector for effective TCP traffic feature extraction,
storing them in shared memory to facilitate seamless ML
algorithm interactions on the control plane, devoid of data
plane disruption. Lastly, Holland et al. [12] proposed the

nPrint framework, which transforms packets into a consistent
binary format without sacrificing contextual meaning. This
mechanism empowers ML algorithms to automatically identify
key features, avoiding the efforts of manual feature extraction.

The data preparation phase involves direct interaction with
real networks, which can be extremely challenging given the
high-speed data flows and system-level complexities. Despite
the limited test scenarios, these solutions provide valuable
first-hand guidelines for efficiently collecting & representing
data and initiate a broader trend in network research toward
developing more sophisticated, ML-compatible methods for
data preparation.

B. Development

Model development consists of two fundamental steps, i.e.,
algorithm design, model training & validation, each crucial to
determine a solution’s overall readiness for the target network.

Algorithm design. The purpose of ML can be threefold:
(i) making effective use of existing knowledge, (ii) gathering
a structured understanding of unknown phenomena, and (iii)
learning to achieve a goal, which can be mapped to three
branches, i.e., Supervised, Unsupervised, and Reinforcement
Learning (RL) – with potential intersections among them (e.g.,
semi-supervised or self-supervised learning).

Supervised ML techniques, such as regression and classifi-
cation, excel at tracking well-specified problems in open-loop
settings to increase visibility about network traffic or distill
insight from raw data. In particular, regression techniques
are fit for forecasting (e.g., traffic demand or user behavior)
or learning complex relationships, such as relating network
Quality of Service (QoS) indicators to user Quality of Ex-
perience (QoE). Classification techniques are another related
example where AI techniques are useful: traffic prioritization
requires coarse-grained traffic class labels for policing and may
additionally require fine-grained application labels.

Unsupervised ML operates by identifying patterns and
structures within data without labeling, relying instead on the
algorithm ability to discern intrinsic features and relationships
within the dataset. For example, unsupervised AI employs
algorithms in anomaly detection to discern data deviations
by autonomously learning underlying distributions. These al-
gorithms identify outliers representing significant departures
from established patterns without reliance on pre-labeled nor-
mal data instances.

RL is suitable for sustained and efficient closed-loop AI
automation environments. An example is the automation of

4

TABLE I: Synoptic of the related works.
Data Feature Algorithm Hyperparam. Model TargetReference acquisition extraction design tuning training Validation Deployment Management network Use cases

Bronzino et al. [10] ✓ ✓ - QoE inference

Yao et al. [9] ✓ ✓
Datacenter Load balancing

network Traffic classification
Resource scheduling

Holland et al. [12] ✓ ✓ ✓ ✓ ✓ - Traffic analysis

Swamy et al. [8] ✓ ✓ ✓ ✓ ✓
Datacenter Anomaly detection

network Traffic classification
Botnet detection

Lacoboaiea et al. [6] ✓ ✓ WLAN Resource scheduling

Zheng et al. [13] ✓ ✓ ✓ ✓
Datacenter Anomaly detection

network QoE inference
Yang et al. [4] ✓ - Traffic classification

resource management by using RL, implemented through
centralized cloud agents or distributed device agents. In this
context, AI agents are dedicated to improving QoS, e.g.,
enhancing transmission efficiency and reducing latency. To
attain such a goal, agents are rewarded for their actions,
effectively balancing exploration and exploitation within a vast
state space, thus providing network operators with automated
and optimized solutions [12].

Model training & validation. In the system context of
model training & validation, factors such as inference effi-
ciency, generalizability, and safety hold similar significance
as the traditional focus on accuracy. For instance, generaliz-
ability ensures timely adaptation in dynamic environments like
disaster-resilient networks, safety is crucial for ML algorithms
that require frequent interaction with real systems, and infer-
ence efficiency is crucial for quick decision-making.

Existing solutions: Two prior works explore AutoML to
automatically carry out model selection and hyper-parameter
tuning to hide the AI/ML-specific complexities from network
operators. Holland et al. [12] leverage the AutoGluon-Tabular
framework to locate and ensemble models with high predictive
accuracy and low inference latency, given the features and
labels. Similarly, Swamy et al. [8] employ an optimization
framework that automatically performs algorithm selection and
model generation as a Bayesian optimization problem based
on user intents and network constraints. Lacoboaiea et al. [6]
address the challenges of building a Deep RL-based channel
manager, specifically focusing on training safety, efficiency,
environment realism, and generalization. They leverage digital
twins for secure training, adjust learning rates for efficiency,
enhance simulator fidelity with real-world data, and bolster
generalization via synthetic noise and actual data integration.

These initial research endeavors provide viable directions
for model development in the context of real network systems.
Moving forward, the focus of network-oriented AI/ML-based
solutions will likely shift towards further simplifying the
complexity of these technologies for more diverse network
environments and application scenarios.

C. Operations

In this part, we elaborate on AI/ML-based solutions that re-
quire attention in real-world networks concerning deployment
and management.

Deployment. Operational deployment encompasses pack-
aging, customization, and feasibility tests. As ML-based so-
lutions were mainly intended for the control plane, these
tasks can be handled by general-purpose model serving tools.
Recently, intrigued by the advantages of in-network ML,
researchers began to push the ML frontier into the network
data plane to capitalize on the voluminous data there [13].
Model deployment becomes a Sisyphean task due to the dis-
tinctions between the local implementation environment and
network infrastructure, and the divergent tooling can sorely
impede customization. Moreover, as networks are replete with
a plethora of specialized hardware devices with disparate
architectures, configuration routines, and resource footprints,
the deployment process entails refactoring a solution into a
generic data-processing pipeline with minimal interference on
the network service [8].

Management. Furthermore, managing the deployed ML-
based solutions involves model serving, resource & operation
management, and drifting monitoring tasks. In particular,
as network systems can evolve expeditiously, the intrinsic
concept/data drifts can result in model decay and service
degradation. The inference quality should thus be constantly
inspected to detect performance diminishments and trigger
the model-rebuilding process whenever applicable. In real
networks, the correct quality metrics and triggers should be
carefully scoped, and the monitoring overhead should also be
balanced with the quality assessment accuracy [4]. Depending
on the problem context, the rebuilding process can start from
the data preparation and labeling or model development stage,
which must be specified beforehand.

Existing solutions. To cope with these challenges, Zheng
et al. [13] introduce the Planter framework as a counter-
measure to these limitations. This modular architecture fa-
cilitates the seamless deployment of diverse in-network ML
algorithms across three prominent hardware platforms: Intel
Tofino, BMv2, and P4Pi. Notably, Planter is adept at accom-
modating a slew of mainstream ML algorithms. The post-
training phase sees these models automatically transform into
P4 code tailored to the specific target, subsequently undergoing
compilation and data plane integration for functional valida-
tion and deployment. On the other hand, Swamy et al. [8]
craft compiler tools designed to autonomously render target-
oriented code for three widely adopted deployment platforms:
FPGA, Tofino, and Taurus. Additionally, they harness a cycle-

5

Data
collection

Model
development

Model
deployment

Search for
 previous source �les

Data
collection

Model
development

Model
deployment

Search for
 previous source �les ...

Data
collection

Model
training

Model
evaluation

Tooling
selection

Pipeline
building

Model
deployment

Automation

Conventional lifecycle

Automated lifecycle

Fig. 2: Conventional vs. Automated ML lifecycle.

accurate simulator to preemptively gauge the model’s key per-
formance indicators (KPIs), encompassing throughput, latency,
and resource allocation metrics. Yang et al. [4] focus on the
pivotal concern of monitoring. Their proposed methodology
amalgamates gradient-based techniques with Open Set Recog-
nition and explainable AI paradigms to scrutinize and gauge
the quality of inferences. Comparative evaluations have been
conducted to validate the proficiency of their approach in de-
livering meticulous model evaluations, consistently monitoring
inference quality, and detecting nuanced data drifts.

These works constitute the vital advancements in deploying
and managing the pre-trained AI/ML-based solutions in real
network systems. As the network vendors keep introducing
more sophisticated features and devices, the supported scope
of ML models, deployment targets, and drift detection methods
still require further expansion, which the tools and methods of
these works can assist.

Based on the discussions in Sec. III-A, III-B, III-C. We
summarize all the pioneering works in Table I in terms of the
tackled lifecycle stages, supported types of ML algorithms,
targeted network environment, and already-validated network-
ing use cases. Essentially, each work covers part of the ML
lifecycle stages.

D. Missing pieces to the puzzle

Based on the proceeding review, we identify three missing
pieces to the fully operationalized AI/ML puzzle. First, despite
the optimistic individual advancements, they have not been
cumulatively translated into global benefits. In real systems,
all the individual stages must be seamlessly articulated as
an end-to-end data processing pipeline to reduce the man-
agement & maintenance overhead. With the current reliance
on manual interventions, ML-based solutions will become
heavy to manage in future networks. Second, reproducibility
is not enforced due to the absence of systematic logging and
tracking. Traditional version control tools cannot sufficiently
capture the nuances of ML workflows’ datasets, parameters,
and configuration dependencies, which must be consistently
reproducible for scientific rigor and regulatory compliance.
Third, communication barriers or silos can also arise due to the
disparate expertise & priorities of data scientists and network
engineers, hampering productivity and slowing time-to-value.

We specifically illustrate two approaches for managing the
ML lifecycle in Fig. 2. The traditional workflow involves a
one-off process involving data collection, model development,

and deployment. This approach prioritizes rapid delivery for
the initial time. Nonetheless, as the temporal dimension ex-
tends, this method becomes less efficient. In particular, the
data/system shifts necessitate continuous model retraining.
Without proper management of the model development data,
reproducing and enhancing existing models become laborious
as the whole process can involve multiple teams, from data
science to network engineering. Manual asset transferring is
inefficient and burdensome.

Conversely, the second approach adopts a more systematic
approach. Initially, the involved teams dedicate significant
time to constructing an automated pipeline with established
tracking mechanisms. Compared to the conventional manual
approach, it confers substantial long-term benefits. Being
fully automated, the process ensures consistent reproducibility,
enabling continuous model enhancement, and paves the way
for concerted efforts across different teams.

IV. MLOPS: TOWARDS END-TO-END PIPELINES

This section discusses MLOps as a potential solution for
relieving the operational overhead.

A. Why MLOps?
MLOps is an emerging set of engineering practices in the

ML field aiming at applying DevOps principles to unify the de-
velopment and operation of ML-based systems. Traditionally,
the operational costs of delivering software products can be
countered with DevOps, which encompasses an assemblage of
principles to break the silo between software developers and IT
operations engineers, promoting Automation and Continuous
Integration (CI)/Continuous Deployment (CD) throughout the
product lifecycle. These principles help drive IT and business
outcomes for many businesses and organizations. The network
community has adopted DevOps to fuel technological innova-
tion and revenue growth [4].

However, though DevOps can curb the operational overhead
of productionalizing traditional software projects, they lack
supplemental support for the unique characteristics of ML.
There are five fundamental discrepancies between conven-
tional software and ML: First, code quality predominantly
decides the performance in traditional software; In AI/ML, the
model and data all impact the outcome [1]. Second, traditional
software is usually built on full-fledged libraries with clear
abstraction boundaries [11]. ML-based solutions, au contraire,
often involve a broader range of tools, libraries, and platforms,
subject to extra integration and maintenance costs. Third,
unlike traditional software that conveys deterministic outputs,
ML models are intrinsically stochastic and entail disparate
processes to validate their behaviors. Fourth, ML models are
susceptible to data/concept drifts, which are common in real
networks and thus necessitate drift monitoring and model
rebuilding [4]. Finally, building and operating ML-based so-
lutions call for data science skillsets, which are missing in
traditional software/network routines. According to a recent
survey, 55% of telcos lack the pertinent data science talent [3].
Although network practitioners can gradually get acquainted
with AI/ML and data science, mastering the theories and
technical details requires time.

6

Data
exploration

D
e

v
e

lo
p

m
e

n
t

p
ip

e
li

n
e

Data
conversion

Feature
extraction

Algorithm
design

Model
training

Model
Validation

Tuning

Data scientists

V
e

rs
io

n
c

o
n

tr
o

l

Data store Metadata store

Experimentation

Experiment tracking

Code repository

O
p

e
ra

ti
o

n

p
ip

e
li

n
e

Network engineers

Data preparation

Data
validation

Data
cleaning

Data
conversion

Feature
selection

Model
training

Model
validation

Model registry

CI Trained
model

Model serving
CD

Performance monitoring
CMCT

Data
engineers

Inference
requests

Inference
outcome

Fig. 3: MLOps for networking: A tenable architecture.

B. What is MLOps?

Layered on the DevOps tenets, MLOps accommodates the
unique traits of AI/ML with the following practices:

• Continuous Monitoring (CM) / Continuous Training
(CT): MLOps addresses the model decay problem by
constantly monitoring the data and inference quality and
rebuilding the model whenever applicable.

• Automation: To alleviate the operational cost, MLOps
aims to streamline all the AI/ML lifecycle stages as a
fully automated pipeline without human intervention.

• Versioning: Based on the DevOps version control for
code, MLOps advocates the version control of artifacts
involved in the process, including data, model, and code.
The accompanying data and feature stores also simplify
data governance.

• Experiment tracking: All experiments should be system-
atically tracked to ensure reproducibility and auditability.

• Collaboration: MLOps advocates a common platform and
language to build synergy across the involved persons
with different priorities and expertise.

With these practices, MLOps proposes a promising way to
consolidate innovations across the ML lifecycle and dramat-
ically curtail operational costs, even though this burgeoning
discipline is still nascent in the AI/ML network community.
We envision a plausible architecture in Fig. 3, where most
MLOps practices can be adopted for real networks, though
considerable tooling and engineering efforts are still inevitable.

C. MLOps for networking: A case study

This section demonstrates the benefits of MLOps with a
case study on a real network benchmark. Specifically, we
implement an ML-based solution for KPI forecasting, a crucial
task for predictive maintenance in operational networks. To
retain production setting, we deploy software network services
across a distributed cluster inside a small-scale enterprise
datacenter, where each node is a commodity off-the-shelf
server equipped with Intel Xeon CPUs and Intel 10/40-Gigabit
network cards. The network services attain line-rate traffic
processing. We predict the overall network service perfor-
mance, e.g., throughput, using the features of the underlying

Data
preparation

Feature
selection

Model
selection

Parameter
tuning

Optimal
solution

Model
delivery

Drift
detection

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

62%

72%
79% 81% 84%

76%
82%

87% 88%

96%
Accumulated Accuracy Efficiency

SFC
Bridge

0
25
50
75
100
125
150
175
200

La
te

nc
y

(s
)120s

0.4s

150s

20s

MLOps
Conventional

Fig. 4: The MLOps benefits on accuracy and efficiency.

hardware subsystems, including Processor, Memory, and PCI
buses, to circumvent the intricacy of in-band data collection.
These features can be readily obtained using standard profiling
tools. As detailed in [14], though these features seem less
relevant than the packet-/flow-level statistics, they contain
valuable insights on service performance and can be utilized
for KPI predictions. To elude the aforementioned manual
exertions throughout the data preparation, development, and
operations phases, we adopt common MLOps practices to
build a prototypical data processing pipeline, whose workflow
is detailed as follows:

• Data preparation: We define standard procedures for the
entailed steps (i.e., data collection, validation, and la-
beling) to automatically obtain high-quality data without
interfering with the normal operations in the data plane.

• Feature selection: To extract the most relevant features
from the ∼600 features collected by standard profiling
tools (e.g., Linux perf, Intel PCM), we employ Pearson’s
correlation coefficient to assay their statistical dependen-
cies with the target service KPIs.

• Automated model selection: According to the studies of
Manousis et al. [14], we consider three ML models:
Linear Regression, Gradient Boosting Regression, and
Artificial Neural Network, for automated model selection.

• Automated hyper-parameter tuning: We employ Bayesian
optimization to evaluate the performance of different
hyperparameter combinations and build a probabilistic
model to automatically select the optimal one.

• Performance monitoring and feedback loop: We employ
the Jensen-Shannon divergence to inspect the input data
distribution to establish a continuous monitoring mecha-
nism. When the new data diverges from the training data,
the feedback loop should be activated to retrain and roll
out an up-to-date model.

• Versioning and experiment tracking: we employ
MLflow [1] to maintain detailed records of all the
involved model artifacts, datasets, (hyper-)parameters,
and other assets in the model development process,
ensuring both reproducibility and auditability.

An empirical evaluation of our data processing pipeline
is presented in Fig. 4. We focus on two test scenarios: a
singleton virtual network function (L2 bridge) and a Lin-
ear Service Chain (SFC) with five network functions. For
each scenario, we collect the training data under varied in-
put loads. We first investigate the benefits of incrementally

7

applying the customized data preparation, feature selection,
model selection, and hyper-parameter tuning procedures. As
shown in Fig. 4, our systematic refinement strategies can
incrementally enhance the overall accuracy, i.e., 76% → 96%
for bridge and 62% → 84% for SFC. Furthermore, the
implemented automation can significantly reduce the incurred
model delivery time compared to the conventional, manual
approaches. In particular, the time required to detect data
drift has been reduced to merely 0.4 seconds, thanks to the
seamless identification of distribution shifts. Given that our
prototype has not even integrated the most advanced tools and
techniques, we believe MLOps can offer huge performance
boosts and smooth the adoption of AI/ML in future networks.

V. CONCLUSION

Due to the lack of system-related considerations, AI/ML
is still not an integral part of modern networks. This paper
analyzed the inconsistencies between existing AI/ML-based
solutions and real network systems and discussed all the prac-
tical considerations throughout their product lifecycle. We also
reviewed the related works and identified the missing pieces.
Then, we conducted a case study to validate the advantages of
MLOps in a real network system. Based on our experience, we
recommend MLOps as a promising way to erase operational
concerns. We believe this paper can raise awareness about
the practical hurdles of developing, deploying, and managing
AI/ML-based solutions in production settings and expedite the
integration of AI/ML in future network systems.

REFERENCES

[1] J. Bradley et al., “The Big Book of MLOps,” https://www.databricks.
com/p/ebook/the-big-book-of-mlops, 2022.

[2] D. Rossi et al., “Landing AI on networks: An equipment vendor
viewpoint on autonomous driving networks,” IEEE TNSM, 2022.

[3] Nokia Networks, “AVA AI and analytics,” https://nokia.com/networks/
ai-and-analytics, 2022.

[4] L. Yang et al., “Quality monitoring and assessment of deployed deep
learning models for network AIOps,” IEEE Network, 2021.

[5] W. John et al., “Service provider devops,” IEEE Communications
Magazine, 2017.

[6] O. Iacoboaiea et al., “From design to deployment of zero-touch deep
reinforcement learning WLANs,” IEEE Commun. Mag., 2023.

[7] F. Pacheco et al., “Towards the deployment of machine learning solutions
in network traffic classification: A systematic survey,” IEEE Commun.
Surveys Tuts., 2018.

[8] T. Swamy et al., “Homunculus: Auto-generating efficient data-plane ML
pipelines for datacenter networks,” arXiv:2206.05592, 2022.

[9] Z. Yao et al., “Aquarius-enable fast, scalable, data-driven service man-
agement in the cloud,” IEEE TNSM, 2022.

[10] F. Bronzino et al., “Traffic Refinery: Cost-aware data representation for
machine learning on network traffic,” ACM POMACS, 2021.

[11] D. Sculley et al., “Hidden technical debt in machine learning systems,”
NeurIPS, 2015.

[12] J. Holland et al., “New directions in automated traffic analysis,” in ACM
CCS, 2021.

[13] C. Zheng et al., “Automating in-network machine learning,”
arXiv:2205.08824, 2022.

[14] A. Manousis et al., “Contention-aware performance prediction for vir-
tualized network functions,” in ACM SIGCOMM, 2020.

